
Multimedia Broadcasting System: An Implementation of GRUM With Recommended

Technical Improvements for GRUM Communication Models

Communications of the IBIMA

Volume 3, 2008

41

Multimedia Broadcasting System: An Implementation of GRUM With

Recommended Technical Improvements for GRUM Communication Models

Lim Tong Ming, Universiti Tunku Abdul Rahman, 9 Jln Bersatu 13/4, PJ, Selangor, Malaysia.

tongminglim@gmail.com

Chin Tek Min, haleychin@gmail.com

Teh Chia Ching, sakuragi_003@yahoo.com

Chong Khong Mun, ckm3812@yahoo.com

Abstract

Multimedia Broadcasting System (MBS) is a
distributed media software system that provides
reliable broadcasting services using GRUM over
the Internet. The proposed Multimedia Broadcasting
System ensures that all media files broadcasted by

the sender will be received by the receivers through
copper-based public switching network which
provides unreliable low bandwidth communication
services. This paper introduces GRUM as the
reliable unicast/multicast API for the
communication layer between the sender and

receiver to achieve the reliable broadcasting
services. The MBS also proposes a Split-and-Join
Later algorithm to improve on the GRUM’s
communication models for the broadcasting of large
media files over the unreliable Internet connection
in the Malaysian public switching network

environment.

1. Background, Motivations and Goals

Over the past twenty years, there are lots of new

applications and technologies emerged due to the

advancement of network infrastructure and

technology. With the latest development in the

networking technology and higher demand for

multimedia streaming services, higher quality of

service and more reliable streaming are critical

ingredients in the broadcasting industry.

Multimedia streaming is activities which allow

video and sound to be sent continuously and

concurrently to one or many users by service

providers. For countries that have broadband

connection, multimedia streaming services can be

delivered with high degree of quality of service.

However, for countries that are lack of broadband

connectivity, multimedia streaming is a great

challenge due to network traffic congestion and

unstable connection. These issues have resulted in

poor streaming performance. Although existing

streaming multimedia technologies such as peer-to-

peer streaming and stream-on-demand have been

serving the users for years, but these technologies

do not guarantee ordered and reliable delivery

services in a copper-based public networking

infrastructure like Malaysia. As a result, this will

lead to the media files corruption and low level of

quality-of-service.

The project examined in this paper has set few

objectives to be achieved. They are as follow:

1) To design, implement and prototype a

Multimedia Broadcasting System (MBS)

using the GRUM API [1].

2) To test and evaluate the reliability and

performance of the multimedia streaming

services.

3) To carry out detail examination and discussion

on the GRUM’s communication model in order

to study potential enhancements to the current

GRUM’s communication models so that the

performance of the MBS can be improved.

4) To propose enhancements to GRUM to

improve on its capability to handle very large

media files without relying entirely on the heap

space of the Java Virtual Memory.

2. Review of Research Works

SRM (Scalable Reliable Multicast) and RMA

(Reliable Multicast) consists of various kinds of

recovery mechanism. In general, the recovery

strategies consist of a prioritized list of recovery

servers/receivers (clients) and/or randomly

organized. Recovery requests are sent to the

recovery clients on the list one-by-one until the

recovery effort is successful. Danyang Zhang,

Sibabrata Ray, Rajgopal Kanna, S.Sitharana

Iyengar, however, had proposed a polynomial time

algorithm [2] for choosing the recovery strategy

with low recovery latency without spending much

bandwidth and performs 20% greater than the other

two algorithms.

Lim Tong Ming,Chin Tek Min, Teh Chia Ching and Chong Khong Mun

Communications of the IBIMA

Volume 3, 2008

42

Reliable probabilistic multicast (rpbcast) [3]

proposed by Qixiang Sun, Daniel C.Sturman, and

Tatsushiro Tsuchiya and Tohru Kikino is a hybrid of

centralized and gossip-based approaches as the

recovery mechanism in a large systems. Qixiang

Sun and Daniel C. Sturman [3] used Log-based

Receiver-reliable Multicast (LBRM) and Bimodal

Multicast (pbcast) as the basis and propose a more

reliable version of reliable multicasting by mixing

LBRM and pbcast. However, the traditional

approaches do not scale well due to centralized

recovery mechanisms and excessive message

overhead. Rbpcast, uses gossip as the primary

retransmission mechanism and only contacts loggers

if gossips fail. Large groups of active senders are

supported using negative gossip that specifies those

messages a receiver is mussing instead of those

messages it received.

Expanding ring search (ERS), is a mechanism for

building a scalable and reliable multicast tree based

system whereby the receivers are organized in an

ACK tree. However, ERS has a poor scalability,

strong dependency on the multicast routing protocol

 and the need for bidirectional multicast capable

networks which cause ERS become the Internet

standard mechanism. According to Christian

Maihofer, author for Scalable and Reliable

Multicast ACK Tree construction with the Token

Repository Service [4, 5], shortcomings raised by

the ERS in the ACK tree for reliable multicast can

be resolved by Token Repository Service (TRS)

which is based on a token repository and a

modification of ERS. The TRS store tokens, which

represents the right for a joining node to connect to

a certain parent node in the ACK tree.

In short, the approaches studied in [2,3,4,5] can be

critically commented and compared as in Table 1.0.

Criteria studied LBRM Pbcast Rpbcast

Protocol Log-based gossip-based hybrid protocol

Link utilization No Better link utilization Better link utilization

Distribution load Plenty of retransmission

among nodes

Balance Balance

Local buffer Not require Buffer require Buffer require

Reliable log server Need a reliable log

server

Not require Not require

Latency (from sender to

all receivers)

High when high send

rate

Middle latency Random re transmission

selection, sometimes

may not succeeded – but

low latency

Recovery mechanism Push-base recovery Push-base recovery Pull-base recovery

Message overhead constant difference in

overhead between

rpbcast and LBRM is

due to additional

information

in rpbcast's gossip

messages so LBRM will

increase due to an

additional membership

protocol

approximately linear

with the number of

senders

-

Message overhead types consist of

acknowledgments,

periodic heartbeats, and

retransmission requests

gossip messages and

retransmission requests

consists of gossips,

garbage collected

notification and

acknowledgements

Table 1.0: A detailed comparison of the three (3) approaches studied in [2,3,4,5]

3. Guaranteed Reliable Asynchronous
Unicast and Multicast

Multimedia Broadcasting System: An Implementation of GRUM With Recommended

Technical Improvements for GRUM Communication Models

Communications of the IBIMA

Volume 3, 2008

43

Guaranteed Reliable Asynchronous Unicast and

Mulicast (GRUM) architecture applied the Layered

Architecture for the entire component. GRUM

engine consists of few modules; there are

GRUM.util, GRUM.API, GRUM.Client,

GRUM.Node, GRUM.MulticastTransport and

GRUM.UnicastTransport. The GRUM.Util module

provides a common utility framework for the entire

GRUM architecture. GRUM.API module publishes

all the necessary functionalities which can consume

by others. GRUM MulticastTransport and

UnicastTransport are the modules that provide the

communication services either Multicast or Unicast

among all the computers. GRUM.Node module is

designed for handling the membership for every

computer that joins the group. Node membership

will be monitor by the coordinator for maintain the

heartbeat and session for each node. GRUM.Client

module provides basic commands such as send,

sendto, createChannel, setMemberListener,

setMulticastListener, setUnicastListener and so on.

Figure 1: GRUM Architecture.

3.1 Detail Flow of the GRUM’s Unicast
and Multicast Communication Models

GRUM API Module consist of two communication

models; multicast and unicast communication

models. Figure 2 is the multicast communication

model and its process flows. MBS Sending Data

Model applies both GRUM’s communication

models to broadcast data to all the receivers. In

Figure 2, before a sender is able to start

broadcasting the messages to receivers, the sender

has to inform the (GRUM’s) Coordinator regarding

the sending action (step 1). Once the Coordinator

receives the sender’s request, the request will be

processed. As the request is going through the

processing stage, the Coordinator replies to the

sender that the current request is being received and

is currently being processed (step 2). As the request

is being processed in the processing stage, the

coordinator will inform the sender that the current

request is received and is currently being processed.

Meanwhile, the Coordinator will validate the

request (step 3 and step 4) and notify the sender if

the sending action is approved. A BatchID will be

dispatched if the approval is granted (step 5). When

the sender obtains an Invoke message from the

Coordinator, a Confirmation message for the

sending action will be sent to the Coordinator (step

6) and the sender will start the broadcasting

messages to all the receivers (step 7). When the

sender obtained an invoke message from the

coordinator, a conformation message of the sending

action will be sent to the coordinator in return. After

then, the sender will only start to broadcast the

message to all the receivers.

Figure 2: Multicast Communication Model

A BatchID will be assigned to every message sent

and the BatchID value will increase by one for

every sent message. As soon as the broadcasting

Lim Tong Ming,Chin Tek Min, Teh Chia Ching and Chong Khong Mun

Communications of the IBIMA

Volume 3, 2008

44

data completed, the sender will inform the

Coordinator that the broadcasting event has been

finished with a CommitedID (step 8). The

CommitedID is the last BatchID assigned to the last

message. It is an indication to all the member of the

group so that each recipient is aware of the expected

number of messages to be received. As long as the

ReplyUpdate message reach at the Coordinator, the

Coordinator will process the message and respond

by notifying the sender that the current request is

undergoing the processing stage (step 9). The

Coordinator will then announce the CommitedID to

all the receivers to publish the last message counter

of the sender (step 10). All the receivers will be able

to identify any lost messages based on the latest

CommitedID broadcasted by the Coordinator. If

there are any lost messages, the receivers will then

ask for the Messages Recovery process to be

activated for a particular sender using Source-based

Recovery algorithm [2] (step 11). The sender will

then broadcast the missing messages to the receivers

which requested for the recovery process (step 12).

In Figure 3, the GRUM Unicast Communication

Model and the process flows are illustrated. Before

a sender begins sending the messages to a receiver,

the sender has to request the permission from the

Coordinator (step 1). The Coordinator will

immediately notify the sender that the request is

being received and processed (step 2). The

Coordinator will validate the request (step 3 and

step 4) and acknowledge the sender if the sending

action is approved. If request is approved, a

UniBatchID (step 5) will be given and sent to the

sender. When the sender obtains the Invoke

message from the Coordinator, a Confirmation

message for the sending action will be replied to the

Coordinator (step 6) and then the sender will only

start the broadcasting services to the receiver (step

7). For every message sent, a UniBatchID will be

assigned to the message and the UniBatchID value

will be increase for every sent messages. When the

sending process has completed, the sender will

inform the Coordinator that the broadcasting event

has been finished with UniCommitedID (step 8).

The CommitedUniBatchID is the last BatchID

assigned to the last message of the sending activity.

The Coordinator will notify the sender that the

current request is being received and is under

processing (step 9). The Coordinator will announce

the CommitedUniBatchID to the receiver to

indicate the latest message broadcasted by the

sender and its last counter value (step 10). Once the

information is received by receiver, an

acknowledgement will be sent back to the

Coordinator (step 11). The receiver will identify

any lost messages based on the latest

CommitedUniBatchID. If there are any lost

messages, the receivers will then request for a

Messages Recovery service from the sender (step

12). The sender will again broadcast the missing

messages to the receivers (step 13).

Figure 3: Unicast Communication Model

4. The Proposed MBS Design and
Architecture

The proposed Multimedia Broadcasting System

(MBS) utilizes a modular architecture. The

proposed MBS architecture consists of few

components (Figure 4). Fundamentally, the MBS

system is organized into few modules; they are

Process, GRUM, and Service modules. Service

module composes of DB Factory, Wrapper

Factory, Unicast and Multicast ReceivedEvent

Handler. DB Factory provides services for the

execution of the sender, receiver and coordinator

with the underneath object-oriented database

(namely, db4o). In other words, DB Factory handles

all the transaction issues such as insert, select,

update and delete operations. Wrapper Factory is

responsible for breaking up a file into multiple

Multimedia Broadcasting System: An Implementation of GRUM With Recommended

Technical Improvements for GRUM Communication Models

Communications of the IBIMA

Volume 3, 2008

45

fragments whereby all the size of each fragment is

according to predefined block size. In addition, each

fragment also encapsulates with extra information

such as block identity, unique identifier, message

type, command type and so on. The Process module

is designed to handle the Sending and Receiving

activities of data among the sender, receiver and

coordinator. It is sub-divided into Sending and

Receiving processes. Sending is responsible for the

distribution of the commands and media files to all

receivers, while Receiving is used to accept the

incoming messages from the sender and performing

the joining task once the files completed the

receiving tasks. To enable Sending or Receiving

processes, a request for service message to the

GRUM API module is required before the process is

executed.

Figure 4: Multimedia Broadcasting System

Architecture.

Unicast and Multicast ReceivedEvent Handler in

charge of the reactions of the receivers towards the

incoming data from the sender. For Unicast

ReceivedEvent and Multicast ReceivedEvent

handler, both classes store the incoming messages

into temporary object-oriented database storage for

subsequent processing job. The implementation of

the Unicast Event Handler and Multicast Event

Handler is depended on the GRUM API to trigger

all the required activities.

5. Design Strategies of MBS

MBS is a distributed multimedia player that was

built using GRUM in order to have a reliable

broadcast of media data to all receivers in remote

locations on a not-so-reliable copper-based network

infrastructure. It is a system that ensures the media

data broadcasted by a sender are received

completely and entirely by all the receivers within

the same group.

5.1 The Flow and Detail Design of MBS

In the design of MBS data transferring process,

there are several types of message in the

communication activities. These message types are

Data, Command, Information, Construction and

File. Data are messages that contain data block that

is part of the media file, message type, block

identity and a unique identifier. The unique

identifier is a random unique identifier generated

through java utility facilities. Generally, every

single media file that is broadcasted by the sender

will be split into few blocks whereby the size of

each block is according to a predefined size. Every

single block will have a block identity which

indicates the block arrangement sequence. For

example, data block with block identity “2”

specifies the second part of the media file. Once the

receiver gathered all the blocks, receiver will

construct the file back based on the block identity in

ascending order. Command message is used to

notify the multimedia player to play or stop the

media files. Information message is the message

that describes the media details such as the file

name, file size, and total block. Construction

message is used to construct the original file by

combining the content within all the blocks in its

original sequence. A File message indicates the

media files that are successfully received by the

receiver and keep track of the file’s current location

in a particular computer.

5.2 The Design of MBS Sending and
Receiving Strategies Utilizing GRUM as
the Communication Engine

MBS is designed to broadcast media files in various

sizes. It also ensures that all these files are received

by the intended receivers without being affected by

the network infrastructure and reliability. The

unpredictable Internet connection in some countries

such as Malaysia, will not affect the broadcasting

services and corrupt these files.

In Figure 5, the MBS enhances the GRUM’s

communication model between a sender, receivers

Lim Tong Ming,Chin Tek Min, Teh Chia Ching and Chong Khong Mun

Communications of the IBIMA

Volume 3, 2008

46

and coordinator by proposing additional features

into it. Before the sender and receiver involve in the

media files broadcasting, both of them have to

register them to the GRUM coordinator. The

GRUM coordinator is the centralized information

repository for publishing the registered senders and

receivers in a group. GRUM coordinator also checks

registered senders and receivers whether they are

active or inactive state by enquiring their current

status. If any senders or receivers did not respond by

sending a feedback to the GRUM coordinator after

certain

Figure 5: MBS Communication Model.

time interval, these senders or receivers are

considered to be inactive and will be dropped out

from its information repository or yellow page by

the GRUM coordinator. Both senders and receivers

must obtain the GRUM coordinator service

agreement before they can proceed to other

processes. The GRUM API Broadcast [1] is the

communication layer between the sender, receiver

and coordinator that provide the sending or

receiving information services among each other.

Wrapper Service has two responsibilities, splitting

the big files into certain block sizes and encapsulate

those data block before these block data are

broadcasted. In addition, information such as block

identity, unique identifier, and message type are

appended to the message block. The Unicast and

Multicast Event Handler are invoked when there are

incoming messages from the senders. These

messages will be acted upon by the appropriate

actions or interfaces based on the receiving

messages’ detail.

5.2.1 Sending Data Model

Basically, sending data model involving steps from

1 to 10 (1a, 2a, 3, 4, 5, 6, 7, 8, 9 and 10) as shown in

Figure 5. In the initial step, preliminary task likes

identifying the receivers, select media files that need

to be broadcast and determine the broadcast mode

are the inputs need to provide by the sender before

proceed to next step. In the following step, the MBS

system begins to verify and validate those media

files by compiling a media fragments or files

broadcasting list. For each media file, it consists of

file name, file size, total number of data block and a

unique identifier which will be broadcasted to all

receivers as an information message.

Next, the Wrapper Service will split the media file

to certain block size and assign each block with a

block identity which will be used for joining process

at receiver site. The output from the wrapper service

is a data that had been encapsulated with

information like message type, block identity and

unique identifier. Thus, in this context, it is called

data message. This is followed by the entire data

block will be broadcasted by using GRUM API

Broadcast service to distribute those data to all

receivers. However, before the data is being sent

through the Internet, GRUM API Broadcast service

will temporary store these data blocks into an

object-oriented database as a queue. Before the

GRUM API Broadcast service is able to begin the

sending service, request for broadcasting permission

from GRUM coordinator is required. Once the

request is approved, the GRUM API Broadcast

service will start transmitting the data based on the

content and configurations in the queue to all

relevant receivers.

5.2.2 Receiving Data Model

The receiving data model can be divided into pre-

receiving data model and post-receiving data model.

Pre-receiving data model is where receivers join the

broadcast channel earlier than the senders while

post-receiving data model is where receivers join

the broadcast channel after the senders. In post

receiving model, if the sender has broadcast part of

the media file, the GRUM API broadcast service at

receiver will continue receiving the data broadcast

Multimedia Broadcasting System: An Implementation of GRUM With Recommended

Technical Improvements for GRUM Communication Models

Communications of the IBIMA

Volume 3, 2008

47

by sender and establish a recovery mechanism to the

sender for retrieving back the former data block.

Steps from 1b, 2b, 2c and 2d in Figure 5 are the

initial stage for the receiver to establish the

communication with GRUM coordinator before the

receiving process begins. The receiver will establish

a communication session with GRUM coordinator

for joining the group and ready to accept any

broadcast signal from the sender. For pre-receiving

data model, the GRUM Coordinator will create a

new group based on the pioneer request. For post-

receiving model, the group creation is based on the

sender. From steps 11, 12, 13, 14, and 15, shows the

receiving process at the receiver site. The incoming

messages consist of two types, data message or

playing message. Data message is an encapsulated

data which contain the media file block, playing

command is a command use for playing or stopping

the current playing file.

For all the incoming data received by the GRUM

API Broadcast service, the data will forward to

Unicast/Multicast Event Handler for further

processing. However, to avoid conducting a heavy

processing at event handler, all the incoming

message will temporary store into a database where

by the message will be process later by another

worker. The worker, which is a receiving process,

will ensure all the data message is completely

receive before the file reconstruction occurs. A

Construction message will be created and store into

the database if the transmitting completed. The

receiving process will assign a new sub process

taking responsible for processing those messages in

the database base on the information provide in the

Information message. As to reconstruct the origin

file, the content inside the encapsulated data will be

retrieved according to the block identity in

sequence, extracting out and serialize to the targeted

location for saving. As long as the construction

process is finish, that particular message in the

database will be modify to File message as a record

to inform the player how many files are constructed

and to be played.

6. Analysis of the GRUM’S
Communication Models and the
Performance of MBS

To successfully and reliably broadcast large media

files to all receivers is the most important goal that

GRUM and MBS must fulfill. GRUM

Communication Models is selected as the

communication protocol between the sender and

receiver because GRUM guarantees the reliable

multicast and unicast services. However, currently

GRUM does not perform very well when trying to

send large media files in a low bandwidth public

switching network environment. In order to

overcome this weakness, MBS has introduced a

Split and Join Later algorithm to enable the very

large media files to be sent in the low bandwidth

public switching network environment. Before the

sender broadcasts a large media file, the file will be

split into few smaller parts and before sending

through using GRUM’s communication model. This

splitting strategy will alleviate the sender resources

usage in terms of memory and processing in

broadcasting the file to all receivers. Meanwhile, the

joining process will take place once the parts are

reaching at receiver side. Since every part consist of

a block identity, the joining process will construct

back together by putting the received part to the

right place in a file according to the block identity.

Even if the parts with block identity arrives out of

sequence, the joining process still can proceed

without any problems.

Figure 6: MBS without Split and Join

implementation.

In Figure 6, the MBS was tested without the Split

and Join enhancement. Steps 1 to 5 in Figure 6

shows the activities flow of MBS broadcasting a

large media file (any media files with more than 50

Meg) from sender to receiver. When the sender

begins sending a large media file, the MBS

performs without problem. However, as the heap

space was consumed after some time intervals, the

MBS starts to slow down and finally crashed. In the

diagram, notice that as the GRUM API at the sender

side hits the Java Virtual Machine (JVM) heap

Lim Tong Ming,Chin Tek Min, Teh Chia Ching and Chong Khong Mun

Communications of the IBIMA

Volume 3, 2008

48

space limit crashes when sending a large media file

in its original architecture. This scenario

demonstrated that GRUM’s architecture required

MBS to have large amount of heap resources from

JVM to temporarily store transmitting data while the

sender is broadcasting media files to all the

receivers. As the result, the JVM is always unable to

have sufficient free heap space or main memory for

the large media files processing, hence, bringing

down the MBS.

In Figure 7, the diagram shows that the MBS was

enhanced with the Split and Join implementation.

When the sender begins to send large media files,

the Split module will split the media file by

breaking the original file into few smaller parts and

pass through GRUM API’s Broadcast module for

transmission. Notice that the GRUM API working

smoothly without facing JVM heap space limit

error. This is because the GRUM API only handles

smaller files which require much lesser heap

resources for the processing and broadcasting of

files. As soon as the fragmented media pieces

reached the receiver, the data will be stored in a

temporary space for the processing of the Join

module. Within the Join module, it reforms the

fragmented media files into its original media file.

The Join module will place every smaller and

fragmented part to the correct ‘block’ in its original

file structure by following the numbered block

sequences.

Figure 7: MBS with Split and Join implementation.

7. Testing, Evaluation, and Conclusion

In short, the improvement embedded into MBS to

complement the GRUM API has considerably help

when large media files are broadcasted to multiple

receivers. The following table is statistics for a

small samples collected in our latest run tests.

Media file

size

With MBS’s

enhancement

Without MBS’s

enhancement

1-5Meg OK OK

5-10Meg OK OK

10-50Meg OK Memory break

50-100Meg OK Memory break

Table 2.0: Results comparing with and without

MBS’s enhancement.

The Table 2.0 above showing the results of a

system with and without implements the MBS. The

purpose of this analysis is to show the

differentiation between a system with and without

implement the MBS. From the table 1, the system

with MBS implementation can work smoothly

without facing memory leak problems when the

media file size is increasing. However, for the

system without implement the MBS, the system

always face memory breakdown issues when the

media size growth up from 10 Megabytes and

onwards. Thus, the system without implement the

MBS cannot support for large media file transfers

and unable to complete the data transferring process.

Although the system with implement MBS in Table

2.0 has shown that with the MBS’s enhancement the

sending for very large is still working very well

even though it is slow. Therefore, the future

research should venture into improving the

GRUM’s architecture especially the communication

models of the system to use Split and Join Later

algorithm.

8. References

[1] TongMing, Lim, TechMin, Chin, ChiaChing,

Teh and KhongMun, Chong, “A Guaranteed

Reliable Asynchronous Unicast and Multicast

Engine for Retail Chained-Stores” (2008),

submitted to PACIS2008 (paper under reviewed)

[2] Danyang Zhang, Sibabrata Ray, Rajgopal

Kannan, S.Sitharama Iyengar (2003), A Recovery

Algorithm for Reliable Multicasting in Reliable

Networks, Proceedings of the 2003 International

Conference on Parallel Processing (ICPP’03)

Multimedia Broadcasting System: An Implementation of GRUM With Recommended

Technical Improvements for GRUM Communication Models

Communications of the IBIMA

Volume 3, 2008

49

[3] Qixiang Sun, Daniel C. Sturman (2000), A

Gossip-based Reliable Multicast for Large-scale

High-througput Application, IEEE

[4] Christian Maihöfer, Kurt Rothermel (2000),

Building Multicast Acknowledgment Trees,

University of Stuttgart, Institute of Parallel and

Distributed High-Performance Systems (IPVR)

[5] Christian Maihofer (2000), Scalable and

Reliable Multicast ACK Tree Construction with the

Token Repository Service, Institute of Parallel and

Distributed High-Performance Systems (IPVR)

Copyright © 2008 by the International Business

Information Management Association (IBIMA). All

rights reserved. Authors retain copyright for their

manuscripts and provide this journal with a

publication permission agreement as a part of

IBIMA copyright agreement. IBIMA may not

necessarily agree with the content of the manuscript.

The content and proofreading of this manuscript as

well as and any errors are the sole responsibility of

its author(s). No part or all of this work should be

copied or reproduced in digital, hard, or any other

format for commercial use without written

permission. To purchase reprints of this article

please e-mail: admin@ibima.org.

