
 Object-Relational Databases – An Area With Some Theoretical Promises and Few

Practical Achievements

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

47

Object-Relational Databases: An Area with Some Theoretical Promises and Few
Practical Achievements

Marin Fotache, Al.I. Cuza University of Iaşi, Romania, fotache@uaic.ro
Cătălin Strîmbei, Al.I. Cuza University of Iaşi, Romania, linus@uaic.ro

Abstract
This paper tries to point out some of the promises,
quarrels, achievements, and perspectives of the
forced marriage between the relational and object-

oriented data models, from both theoretical and
implementation perspectives. As practical O-R

achievements, the latest SQL standards
(SQL:1999-2008) and Oracle implementation are
discussed

Keywords: Databases, Object-Relational model,
SQL, Oracle, Java

1. Introduction
The computing history has recorded many clichés
and misunderstandings. One of them is Object-
Relational (O-R). The major producers (Oracle,
IBM) have stated that their DBMSs manage O-R
databases. Most of the applications developed in
the latest years combines Object Oriented (OO) and
Relational technologies. So the idea that O-R
model of data rules the database world today is
quite logical. In fact, this is not quite true.

At the beginning of the 1990’s the OO wave struck
the database world [3][5][6]. Surrounded by an
immense interest in OO technologies, relational
model sinking seemed to be a matter of time.
Relational database market was assumed to be
eclipsed by the new OO database products before
2000. But something went wrong, and now
OODBMSs cover just a tiny niche in the market.

Today, all the methodologies, tools, and platforms
for application development are (more or less) OO,
except the databases which remain “a relational
island”. The basic problem of “impedance
mismatch” remains, and much effort is spent these
days in mapping the application objects to database
relational table rows.

2. Relational model, purists and traitors

Almost ten years passed between the publication of
the E.F. Codd seminal paper [1] which marks the
birth of relational data model and first commercial
RDBMS. But within few years the market felt the
expansion of the relational database products.

There are many advantages which can explain the
tremendous success of the relational databases:
clear, short and deep theoretical foundations
(predicate logic), better and better DBMSs
performance in storing and querying data, very
active and enthusiastic communities of researchers
and professionals, etc. SQL popularity was also

decisive in relational model dominance, even if today
SQL is seen by the relational “purists” [2] as a traitor
of “relational laws”.

At the end of 1980s many scholars and professionals
felt uncomfortably with relational rigidity. Compared
with OO, what relational database systems lacked
most were abstract data types, complex integrity
constraints and versioning [3]. So the OO data model
was seen as a a better alternative to relational model
because it could store persistent objects – data
(properties) and code (behaviour). The idea of
storing pieces of code within the database was not
related, as expected, only with OO model. The
network model (CODASYL) allowed database
procedures, written in whatever programming
language, to be invoked [4]. For relational databases,
[4] were among the first to propose stored
procedures. Actually, their idea was more generous
even compared to current implementations – to have
fields in tables which have as value a collection of
commands in the query language supported by the
DBMS.

3. Towards an Object-Oriented Data Model
According to Kim [5], OO concepts evolved in three
different disciplines: first in programming languages
(Simula-67, Smalltalk, C++), then in artificial
intelligence (KEE, ART), and then in databases
(semantic data models). The paradigm of OO
programming is the encapsulation, within an object,
of both the data and the programs which operates on
data. Data is the state of the object (values of the
attributes), and code is the behaviour of the object.
The behaviour is invoked via messages through the
interface.

Despite the accessibility and naturalness of OO,
defining an OO data model has been a daunting task
[3] [5] [6]. As for OODBMS, initially there were two
main approaches [3] [5]: extending a relational
DBMS with new data types, operators, and access
methods; and extending an OO programming
language with database functionality (persistence,
authorization, concurrency).

A highly influential paper in establishing OO data
model as academic and research fields is [6]. It
claims a “pure” and orthogonal database adoption of
object oriented model. The basic idea is to
transparently handle the objects’ pool and their
relationships, produced by OO applications, between
persistent (database) and transient (in-memory)
contexts.

The most distinctive feature of the object oriented

Marin Fotache and Cătălin Strîmbei

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

48

database systems consists in the concept of
“orthogonal persistence” [9] defined by three
fundamental principles:
- independency: the application is not depending on
the manipulated data lifetime (no distinction
between transient and persistent objects);
- data types orthogonality: objects could become
persistent no matter what is the type that they are
defined on;
- persistent identity: the mechanisms to identify and
supply persistent objects must be orthogonal
regarding database system context.

These principles resemble to data independency
ANSI/SPARC principle but generalized and
applied over objects instead of relational data.
Unfortunately this “object” independency principle
has not surpassed the proposal level. OODBMS
providers do not cross the boundary of a single OO
programming language by offering cross-languages
persistence mechanisms. Their mechanisms are
much like extensions (as a specific API) of existing
application platform, built around a programming
language. The lack of compliance with the
principle of data independency and the mathe-
matical “weaknesses” of object oriented models’
foundation, are the major reasons of OODBMS
blame by relational theorists.

The authors of [6] define three categories of
characteristics to be fulfilled by a DBMS in order
to be declared OODS:
Mandatory: complex objects, object identity,
encapsulation, types (classes), inheritance,
overriding combined with late binding,
extensibility, computational completeness,
persistence, secondary storage management,
concurrency, recovery, and ad hoc query facility;
Optional: multiple inheritance; type checking and
inferencing, distribution, design transactions, and
versions;
Open: programming paradigm, representation
system, type system, and uniformity.

The major OODMBS producers gathered
(www.odmg. org) and yielded three standards of
OO database language: ODMG 1.0 in 1993,
ODMG 2.0 in 1997 and ODMG 3.0 in 2000. The
standards technical problems [10], the insignificant
OO share in the database market and the OO
advances in SQL:1999 leaded to group disbanding
in 2001. The market share looks disastrous for
OODBMS producers. The main technical
drawbacks for OODBMS market failure have been,
according to Leavitt [11], the strength of object-
relational producers, bad performance and poor
standardization.

4. Object-Relational Strands
The combination of the two data models, relational
and object-oriented was proposed before coining
the term object-relational. For example, Cattell and
Rogers [12] announced a DBMS which combined

OO and relational models of data. Ullman [7]
anticipated the “synthesis of object- and value-
oriented systems”. More astonishing, Premerlani et
al. [3] used the expression OO Relational Database
to define a database system which combines a
relational DBMS with an OO programming
language. Their basic idea was to buffer the database
with an OO layer that keeps relevant data in memory.
The OO layer would hide the database from
applications.

Nevertheless, the O-R does not deal with mapping
application OO modules of code to a relational
database, but how to store and manage natively
object instances in table tuples.

The first major theoretical development of O-R data
model is [13]. Thought as a reaction to [6], the article
argues that the next generation (the third one) of
database systems would be, in fact, extensions of
relational model, proposing thirteen features to be
incorporated, such as:
- rich data types - complex objects and abstract data
types to model complex structures as meaning to
overcome the relational model “flatness”;
- inheritance (including multiple inheritance) -
mechanism to get new from existing ones though
derivation (no mater what it is about base or abstract
types) taking into consideration the structure as well
as object manipulation function inheritance;
- functions, including database procedures and
methods
- unique identifiers (UIDs) should be assigned by the
DBMS only when a user-defined primary key is not
available;
- rules (triggers, constraints) - active rules to handle
the events or actions materialized as queries as well
as updates;
- non-procedural, high level access language;
- at least two ways to specify collections (by
enumeration, and by query language);
- updatable views
- database accessibility from multiple high level
programming languages;
- SQL support.

As a reaction to first manifesto [6] and the second
one [13], Chris Date and Hugh Darwen started in
1995 a series of papers and books which
circumscribe the so-called The Third Manifesto [2]
[14]. If [6] argued for replacing relational model with
an OO one, and [13] tried to conciliate the two
models, the third manifesto is a frontal attack not
only to OO data model (without blaming object
orientation), but also to SQL standards. The basic
idea is that objects are orthogonal, and the relational
model can manage both standard (primitive) and
user-defined (composite) types, no matter how
complex they are. So the relational model “needs no
extension, no correction, no subsumption, and, above
all, no perversion” [2].

As consequence, two strange directives were

 Object-Relational Databases – An Area With Some Theoretical Promises and Few

Practical Achievements

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

49

prescribed [14] to the database developers:
Relational Model Proscription 10: Not SQL and
Relational Model Very Strong Suggestions 9: SQL

migration. Date and Darwen justify their “war
declarations” against SQL by stating that SQL
(especially SQL:1999) has undermined the
traditional relational by extending the model in the
wrong direction: the object oriented features are
included in a completely isolated manner, defining
object structures above relational ones and not on
their basis. The final result: we can store objects in
tables. Instead they had reconsidered the concept of
domain (already defined in traditional relational
theory as a set of values) and they treated it as real
(abstract) data type thus applying it the OO
principles like encapsulation and inheritance. The
result: tables are variables, these variables contains
sets of TUPLES (with their own types), and the
value of each TUPLE contains a complex of values
(attribute values) selected from a scalar type,
TUPLE type or RELATION type.

Despite the quarrel, there is some degree of
equivalence between SQL last standards
(SQL:1999-SQL:2008) and [14] model, but the
rigorous manner in which Date and Darwen
propose the reformation of the relational model
system type in conformance with the abstract data
types theory make their approach more closed to
conceptual model constructs. Also, Date and
Darwen demand a clear distinction between
specification and implementation of types. DBMS
language (D language) must not have any reference
to how a type (scalar or non-scalar) has to be
implemented. This principle can be exploited in an
interesting way: the implementation of types can be
provided in a independent manner, so the DBMS
might allow to construct the implementation in
language like Java or C++, but the types to be
exposed in the databases language (be it SQL or D)
which is one of the O-R criteria proposed by
Stonebreaker to the “new wave” of DBMSs [15].

Implementing the logical model proposed by the
SQL:1999 standard and The Third Manifesto is a
“mission impossible” because of inexistence of a
real product (DBMS) to do this task. The problem
is that the commercials DBMSs do not extend the
relational model in the same way, but are closer to
the SQL standards than [14] model.

5. Object-Relational Features in SQL
Standards
Prior to SQL:1999 there was no support of user-
defined types, collection, typed tables and other
featured which today are included under object-
relational label. As response to the pressure of
application developers and threatening ODMG
language OQL, soon after SQL-92 publication, the
people involved in SQL standards started adding
new options. According to Melton [16] SQL:1999
introduced SQL Object Model which has two

distinct components, user-defined types and typed
tables.

There are three kinds of user-defined types. First,
distinct types are based on a single built-in data type
(ex. INTEGER, VARCHAR), whose values cannot
be directly mixed in operations with that built-in type
or other distinct types; they can be used to define
columns, just like any SQL built-in type [16].
Second, structured user-defined types as values, such
as address type composed by street, number, city,
county, zip code. As distinct types, structured types
as values can be used for defining the type of the
columns within tables. Third come structured user-
defined types as objects. In a typed table, every row
is an instance of a structured user-defined type as
object. The table has one column for each property
(attribute) of the user-defined type the table is
defined on, and also a self-referencing column which
is the unique object identifier (OID).

As for collection types, SQL is not complete or as
rich as other OO languages. The only collection type
supported by SQL:1999 is ARRAY. In SQL:2003
MULTISET was added. It is equally true, that many
commercial implementations have their own
collection types, more or less conformant with
standards.

A major drawback of SQL standards is the lack of
support for declaration of integrity constraints on
types. It is amazing because some papers argued that
OO model in better than relational in terms of
integrity rules which can be implemented. The
formal definition contains no definition in this
regard. The only way of declaring constraints in SQL
is CREATE/ALTER TABLE.

The “type” notion seems to be the key of the Date
and Darwen theoretical foundation and also, the
“abstract type” is the cornerstone of the Stonebreaker
conception to extend existing relational systems.
More specific, in D language [14] there are types
everywhere, scalar and non-scalar (TUPLE and
RELATION) and these categories of types support
the principles of full-packaging (scalar type with no
components, but with possible representations), user
defined components (non-scalar types), inheritance
and substitutability (either scalar or non-scalar), but
without identity.

In SQL new standards there are several categories of
types: basic data types, considered as atomic or
intrinsic and extendible by users as distinct types,
abstract data types (with their own components or
attributes, identity, inheritance, polymorphism) and
collection types (row type, list type, set type, multiset
type). These categories of types are primary used in
defining the types of attributes from tables’ headings.
Consequently, we can try to find the counterpart
elements of scalar data types of The Third Manifesto
in specifications of abstract data types:

Marin Fotache and Cătălin Strîmbei

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

50

• Observer functions can be considered an
equivalent of read only operators;

• Mutator functions can be considered an
equivalent of update operators;

• Constructors functions ca be used as
selector operators;

• Possible representation components will
be (unfortunately, only in a larger sense)
as attributes of public interface associated
with the abstract data type.

Date and Darwen had made a detailed analysis on
SQL conformance with their prescriptions,
proscriptions and suggestions; the main
conclusions of them can be summarized as in Table
1.

Table 1. Date&Darwen Analysis of SQL Standards

RM Prescription 1 –

Scalar types (possible

representations,

selector operators)

SQL conforms, with some

observations about

constructor function which

in reality initialize an

allocation storage and not

select an arbitrary value

from a domain

RM Prescription 3 –

Scalar operators

SQL conforms with

observers and mutators

RM Prescription 4 –

Actual vs. possible

representation

SQL require indeed a type

representation based on

individual attributes but

does not explicitly

differentiate internal and

external representation

RM Prescription 5 –

Expose possible

representation

SQL conforms mostly

because each attribute

(equivalent with a

component from

representation) definition

automatically causes

definition of one observer

method and one mutator

method

RM Prescription 23 –

Integrity constraints

SQL conforms with respect

to attribute, relvar and

database constraints, but

fails completely with

respect to type constraints

IM Prescriptions 1 –

types are sets

SQL Conforms

IM Prescriptions 2 –

subtypes are subsets

SQL Conforms

IM Prescriptions 8,9 –

scalar values and scalar

variables with

inheritance

SQL Conforms

IM Prescription 10 –

Specialization by

constraint (subtypes

values satisfies

supertypes constraints,

but shall exist at least

SQL fail completely

because of lack of type

constraints

one subtype value that

satisfies an subtypes

special constraint too)

IM Prescription 14, 15

– TREAT DOWN

operator and type

testing

SQL conform thanks to

TREAT AS and TYPE (X)

[IS] OF (t) expressions

IM Prescription 16 –

Read-only operator

inheritance and value

substitutability

SQL conforms

IM Prescription 17 –

Operator signatures

SQL conforms

IM Prescription 18 –

Read only parameters

to update operators

SQL conforms

IM Prescription 19 –

Update operator

inheritance and variable

substitutability

SQL fails, it require update

operators to be inherited

unconditionally (lack of

type constraints)

So, even with the lack of type constraints and the
consequences of this, SQL:1999, SQL:2003, and
SQL:2008 standards acceptable support the scalar
type as they are stated in The Third Manifesto.

6. Oracle Object-Relational Features
Oracle is one of the best database products, not only
as SQL dialect and database logic application
language (PL/SQL), but also as O-R features. Since
Oracle 8i version, new options have been added in
order to work more naturally with objects. Oracle
does not use the term class, but type. Similarly to
packages, every type has a (public) header and a
(private) body. The next example creates the UDT
type as value which is useful in managing addresses:

CREATE OR REPLACE TYPE all_addresses_type AS OBJECT (

 numb NUMBER(3),

 street VARCHAR2(50),

 zipcode NUMBER(6),

 city VARCHAR2(25),

 county VARCHAR2(25),

 MEMBER FUNCTION getNumb RETURN NUMBER,

 MEMBER FUNCTION getStreet RETURN VARCHAR2,

 MEMBER FUNCTION getZipCode RETURN NUMBER,

 MEMBER FUNCTION getCity RETURN VARCHAR2,

 MEMBER FUNCTION getCounty RETURN VARCHAR2,

 MAP MEMBER FUNCTION ordering RETURN VARCHAR2

) NOT FINAL NOT INSTANTIABLE

/

--

CREATE OR REPLACE TYPE BODY all_addresses_type AS

--

MEMBER FUNCTION getNumb RETURN NUMBER IS

BEGIN

 RETURN SELF.numb ;

END getNumb ;

...

--

MAP MEMBER FUNCTION ordering RETURN VARCHAR2 IS

 Object-Relational Databases – An Area With Some Theoretical Promises and Few

Practical Achievements

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

51

BEGIN

 RETURN county || city || zipcode || street || numb ;

END ordering ;

END ;

/

Most of the methods are member functions which
can be applied to an instance (object) of
all_addresses_type type (class). The type is not
final, so it can have subtypes. It is also (by default)
not instantiable.

Next we introduce a subtype of all_addresses_type,
called flat_address_type with four new attributes
(properties) and one overwritten method. This type
is associated with flats (apartments) addresses.

CREATE OR REPLACE TYPE flat_address_type

UNDER all_addresses_type (

 building_name VARCHAR2(30),

 floor VARCHAR2(10),

 apartment NUMBER(4),

 MEMBER FUNCTION getBuilding_name RETURN

VARCHAR2,

 MEMBER FUNCTION getFloor RETURN VARCHAR2,

 MEMBER FUNCTION getApartment RETURN NUMBER,

 OVERRIDING MAP MEMBER FUNCTION ordering

RETURN VARCHAR2

) FINAL

/

CREATE OR REPLACE TYPE BODY flat_address_type AS

--

MEMBER FUNCTION getBuilding_name RETURN

VARCHAR2 IS

...

OVERRIDING MAP MEMBER FUNCTION ordering

RETURN VARCHAR2 IS

BEGIN

 RETURN county || city || zipcode || street || numb ||

building_name ||

 entrance || floor || apartment ;

END ordering ;

END ;

Collections used to be one of the main weaknesses
of the relational databases. Now it is not the case.
In Oracle it is possible to store two types of
collections, nested tables and varrays :

CREATE TYPE phones_type IS TABLE OF VARCHAR2 (15)

CREATE OR REPLACE TYPE person_type AS OBJECT (

 personid NUMBER(7),

 first_name VARCHAR2(30),

 last_name VARCHAR2(30),

 address all_addresses_type,

 phone_numbers phones_type,

 MEMBER FUNCTION getFirst_name RETURN VARCHAR2,

 MEMBER FUNCTION getLast_name RETURN VARCHAR2,

 MEMBER FUNCTION getAddress RETURN

all_addresses_type,

 MEMBER FUNCTION getPhone_numbers RETURN

phones_type,

 STATIC FUNCTION getWhoOwnsThePhoneNumber

(phoneno_ VARCHAR2) RETURN person_type

) NOT FINAL

When some attributes of a typed table are nested
tables, Oracle requires using NESTED TABLE
clause in CREATE TABLE statement. As pointed out
in previous section, in both SQL standards and
Oracle constraints may be declared only at table
creation (see PRIMARY KEY clause) and not at
types definition.

CREATE TABLE people OF person_type (PRIMARY KEY

(personid))

 NESTED TABLE phone_numbers STORE AS

phone_nos_nt

Now, the table being created, the type body may be
declared/compiled:

CREATE OR REPLACE TYPE BODY person_type AS

MEMBER FUNCTION getFirst_name RETURN VARCHAR2 IS

...

STATIC FUNCTION getWhoOwnsThePhoneNumber (phoneno_

VARCHAR2) RETURN person_type IS

 v_pers person_type ;

BEGIN

 SELECT p.object_value INTO v_pers FROM people p

 WHERE p.personid IN (SELECT x.personid FROM people x,

 TABLE (x.phone_numbers) t

 WHERE t.COLUMN_VALUE = phoneno_) ;

RETURN v_pers ;

END getWhoOwnsThePhoneNumber ;

END ;

Method getWhoOwnsThePhoneNumber is a search
method, returning the instance (of person_type)
which has a given phone number.
Inserting objects in PEOPLE typed table requires
default constructors of every type involved:

INSERT INTO people VALUES

 (NEW person_type (1109, 'John', 'Doe',

 flat_address_type(22, 'Narowway', 700100, 'Smallcity',

'Smallcounty', 'GreenTower', '24', 546),

 phones_type ('00330232217000', '00330232217111')))

Querying tables of objects is similar to “regular”
tables. Oracle violates OO encapsulation because
attribute values are extracted not only through type
method invocation, but also in classical SQL way.
Invoking a method which is defined at a subtype in a
hierarchy of types is possible using TREAT clause.
IS OF [ONLY] clause is useful for selecting

Marin Fotache and Cătălin Strîmbei

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

52

instances of a certain (sub)type with or without its
subtypes.

Querying nested tables values is possible based on
TABLE clause which converts the collection
(nested table) into table rows for which WHERE
predicate could be applied.

SELECT p.first_name, p.getLast_Name() AS last_name,

 p.address.city,

 TREAT (p.address AS flat_address_type).getBuilding_name()

AS Build_Name, t.*

FROM people p, TABLE (p.phone_numbers) t

WHERE p.address IS OF (ONLY flat_address_type)

We stop here now, even if there are many other
Oracle O-R features which deserve deeper
discussions: OIDs, referenced objects, collections
updating, triggers on typed tables, etc.

7. Native OO platform (Java) implementation
and SQL exposure in Oracle
Oracle has a solid foundation of object-relational
features, based on notion of OBJECT TYPE. The
approach presented here exploit a critical feature of
Oracle object types: they are callable from SQL
DML and DDL statements and can be implemented
in independent programming language aside
PL/SQL – the implicit procedural database
programming environment, e.g. C, C++, Java (plus
any other language that produce byte code runable
on DBMS JRE).

The main drawbacks consist in that although
CREATE TYPE and ALTER TYPE syntax is
similar with that established by SQL3, there are
some notable differences. One of the most painful
shortcomings is the absence of public/private
declaration of individual components. This minimal
mechanism would allow to differentiate in some
way between possible representations (components
or attributes declared public) and internal
representation (components or attributes declared
private).

To make a practical demonstration of our approach
of independently implement data types usable in
database declaration as SQL statement, let’s
consider the Address type with the number, street,
zipcode, city and county attributes and database
representation. The SQL3 declaration of such a
type will be:

CREATE TYPE all_addresses_type (

 numb NUMBER(3),

 street VARCHAR(50),

 zipcode NUMBER(6),

 city VARCHAR(25),

 county VARCHAR(25)

);

As we have already seen, the simplified Oracle
syntax will be in first form:

CREATE OR REPLACE TYPE all_addresses_type AS OBJECT (

 numb NUMBER(3),

 street VARCHAR(50),

 zipcode NUMBER(6),

 city VARCHAR(25),

 county VARCHAR(25)

);

The generic data class to implement the type
previously defined will be:

package javatypes;

public class CommonAddress {

 public Long numb;

 public String street;

 public Long zipcode;

 public String city;

 public String county;

 public CommonAddress(){}

 public CommonAddress(Long numb, String street, Long

zipcode, String city, String county) {

 this.numb = numb;

 this.street = street;

 this.zipcode = zipcode;

 this.city = city;

 this.county = county;

 }

 public Long getNumb() {

 return numb;

 }

 public void setNumb(Long numb) {

 this.numb = numb;

 }

 public String getStreet() {...}

 public void setStreet(String street) {...}

 public Long getZipcode() {...}

 public void setZipcode(Long zipcode) {...}

 public String getCity() {...}

 public void setCity(String city) {...}

 public String getCounty(){...}

 public void setCounty(String county) {...}

 public String toString(){

 return "Adress: " + this.numb + ", " + this.street + ", " +

 this.zipcode + ", " + this.city + ", " + this.county;

 }

}

Java class to be used as implementation of object
types has to implement the SQLData interface, a

 Object-Relational Databases – An Area With Some Theoretical Promises and Few

Practical Achievements

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

53

JDBC interface which is essential in creating Java
instance of Oracle DDL object type. So, to conform
to this demand we have to create a second class (or
to modify the original class) that extends the first
one and to implement the interface required:

package javatypes;

import java.sql.*;

public class CommonAddressType extends CommonAddress

implements SQLData {

 // original Oracle Object Type

 protected String sql_type;

 public CommonAddressType() { }

 public CommonAddressType(Long numb, String street, Long

zipcode, String city, String county) {

 super(numb, street, zipcode, city, county);

 }

 public static CommonAddressType create() {

 return new CommonAddressType();

 }

 public static CommonAddressType create(Long numb, String

street, Long zipcode, String city, String county) {

 return new CommonAddressType(numb, street, zipcode,

city, county);

 }

 public String getSQLTypeName() throws SQLException {

 return sql_type;

 }

 public void readSQL(SQLInput stream, String typeName)

throws SQLException {

 sql_type = typeName;

 numb = Long.valueOf(stream.readString());

 street = stream.readString();

 zipcode = Long.valueOf(stream.readString());

 city = stream.readString();

 county = stream.readString();

 }

 public void writeSQL(SQLOutput stream) throws

SQLException {

 stream.writeString(numb.toString());

 stream.writeString(street);

 stream.writeString(zipcode.toString());

 stream.writeString(city);

 stream.writeString(county);

 }

 public static CommonAddressType

set_numb(CommonAddressType adr, Long numb) {

 adr.numb = numb;

 return adr;

 }

 public static CommonAddressType

set_street(CommonAddressType adr, String street) {

 adr.street = street;

 return adr;

 }

 public static CommonAddressType

set_zipcode(CommonAddressType adr, Long zipcode) {

 adr.zipcode = zipcode;

 return adr;

 }

 public static CommonAddressType

set_city(CommonAddressType adr, String city) {

 adr.city = city;

 return adr;

 }

 public static CommonAddressType

set_county(CommonAddressType adr, String county) {

 adr.county = county;

 return adr;

 }

}

The loadjava tool will be the vehicle to “port” these
two classes in the database schema, and the DDL
declaration of object type implemented by the
CommonAddressType will be as follows:

CREATE OR REPLACE TYPE all_addresses_type AS OBJECT

 EXTERNAL NAME 'javatypes. CommonAddressType'

LANGUAGE JAVA

 USING SQLData(

 numb NUMBER(3) EXTERNAL NAME ‘numb’,

 street VARCHAR(50) EXTERNAL NAME ‘street’,

 zipcode NUMBER(6) EXTERNAL NAME ‘zipcode’,

 city VARCHAR(25) EXTERNAL NAME ‘city’,

 county VARCHAR(25) EXTERNAL NAME ‘county’

STATIC FUNCTION construct(numb NUMBER, street

VARCHAR, zipcode NUMBER, city VARCHAR, county

VARCHAR) RETURN all_addresses_type

 EXTERNAL NAME 'create (java.lang.Long, java.lang.String,

java.lang.Long, java.lang.String, java.lang.String) return

javatypes. CommonAddressType ',

STATIC FUNCTION set_numb(adr all_addresses_type, numb

NUMBER) RETURN all_addresses_type

EXTERNAL NAME 'set_street(javatypes. CommonAddressType,

java.lang.Long)return javatypes. CommonAddressType ',

STATIC FUNCTION set_street ... ,

STATIC FUNCTION set_zipecode...,

STATIC FUNCTION set_city...,

STATIC FUNCTION set_county...,

MEMBER FUNCTION to_string RETURN VARCHAR2

 EXTERNAL NAME 'toString() return java.lang.String'

)

With EXTERNAL NAME LANGUAGE JAVA and
USING SQLData declarations, DBMS engine will
note that CommonAddressType class will be the
back-end of ALL_ADDRESSES_TYPE object type.
So what we can do with this type: we can associate a
table column with it:

Marin Fotache and Cătălin Strîmbei

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

54

CREATE TABLE customers

(id NUMBER(4), name VARCHAR(30), residence

ALL_ADDRESSES_TYPE)

INSERT INTO customers

VALUES (1001, 'Alpha Inc.', ALL_ADDRESSES_TYPE (11,

'Carol 1', 6600, 'IASSY', ‘IASSY’))

And finally we can try to expose the value type
using and “accessor” function (to_string()) that can
implement a convenient “possible representation”:
SELECT c.name, c.residence.to_string() FROM customers c;

8. Conclusions and open issues
The topic of “post-relational” age in database
systems is a generous one. From many directions
that have been proposed, this paper deal with three
strands of O-R data model, summarized as follows:
• OR Database Systems, asserting extension of the
existing relational “infrastructure” by engrafting
OO generic innovations promoted by semantic data
modeling and application programming
(Stonebreaker, SQL:1999-2008);
• Relational database systems with orthogonal OO
features (Date&Darwen), claiming that all
“traditional” relational theory could remain
unaltered;
• “Pure” OO Database Systems, with no-reference
to the existing relational theory, supplying
“orthogonal persistence” to the application objects.

One of the major drawbacks of today O-R
applications is the “impedance mismatch” between
OO and the relational layers. Much effort has been
purported to finding adequate mapping tools
between OO classes and relational tables [8] [18]
[19].

As proved in Sections 5, 6 and 7, both SQL
Standard and major database servers have powerful
options for dealing with all the major aspects of O-
R model and applications.

It is sad that, instead of creating types and
managing them within O-R tables, and then
mapping directly classes in application logic layer
to typed tables in database layer [8] [20], most of
the application developers just map classes to
relational tables, failing to exploit the strengths of
O-R model.

References

[1] Codd, E.F., A Relational Model of Data for
Large Shared Data Banks, Communications of the
ACM, 13(6), 1970, 377-387.

[2] Darwen, H., Date, C.J., The Third Manifesto,
ACM SIGMOD Record, 24(1), 1995, 39-49

[3] Premerlani, W.J., Blaha, M.R., Rumbaugh, J.E.,

Varwig, T.A., An Object-Oriented Relational
Database, Communications of the ACM, 33(11),
1990, 99-109.

[4] Stonebraker, M., Anton, J., Hanson, E. Extending
a Database System with Procedures, ACM

Transactions on Database Systems, 12(3), 1987, 350-
376.

[5] Kim, W., Research Directions in Object-Oriented
Database Systems, Proc. of the ninth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of

database systems, Nashville, TE, 1990, 1-15.

[6] Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich,
K., Maier, D., Zdonick, D., The Object-Oriented
Database System Manifesto, Proc. of the
International Conference on Deductive and Object-

Oriented Databases, Kyoto, Japan, 1989, 1-17.

[7] Ullman, J.D. Database Theory: Past and Future,
Proc. of the sixth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, San
Diego, CA, 1987, 1-10.

[8] Lodhi, F, Ghazali, M.A., Design of a simple and
effective object-to-relational mapping technique,
Proceedings of the 2007 ACM symposium on Applied

computing, Seoul, Korea, 2007, 1445-1449.

[9] Atkinson, M P., Morrison R. Orthogonally
Persistent Object Systems, VLDB Journal 4 (3),
1995, 319-401

[10] Kim, W., Observations on the ODMG-93
Proposal for an Object-Oriented Database Language,
ACM SIGMOD Record, 23(1), 1994, 4-9.

[11] Leavitt, N., Whatever Happened to Object-
Oriented Databases?, Computer, 33(8), 2000, 16-19.

 [12] Cattell, R.G.G, Rogers, T.R., Combining Object-
Oriented and Relational Models of Data, Proc. of the
1986 international conference on Management of
data, Portand, OR, 1986, 78-87.

[13] Stonebraker, M., Rowe, L.A., Lindsey, B., Gray,
J., Carey, M., Brodie, M., Bernstein, P., Beech, D.,
Third-Generation Database Systems Manifesto, ACM
SIGMOD Record, 19(3), 1990, 31-44

[14] Date, C.J., Darwen, H., Databases, types, and

the relational model. The third manifesto (Reading,
MA: Addison-Wesley, 2007).

[15] Stonebraker, M., Brown, P., Moore, D., Object-
relational DBMSs: tracking the next great wave (San
Francisco, CA: Morgan Kaufmann, 1999).

[16] Melton, J., Advanced SQL:1999. Understanding

Object-Relational and other advanced features (San
Francisco, CA, Morgan Kaufmann, 2003).

 Object-Relational Databases – An Area With Some Theoretical Promises and Few

Practical Achievements

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

55

[17] Seshadri, P., Enhanced abstract data types in
object-relational databases, VLDB Journal, 7(3),
1998, 130-140

[18] Agarwal, S., Architecting Object Applications
for High Performance with Relational Databases,
OOPSLA Workshop on Object Database Behavior,
Benchmarks, and Performance, 1995, available at:
http://www-db.stanford.edu/pub/keller/1995/high-
perf.pdf

[19] O’Neil, E., Object/relational mapping
2008: hibernate and the entity data model,
Proceedings of the 2008 ACM SIGMOD
international conference on Management of data,
Vancouver, Canada, 2008, 1351-1356.

[20] Vara, H.M., Vela, B., Cavero, J.M., Marcos,
E., Model Transformation for Object-Relational
Database Development, Proceedings of the 2007
ACM symposium on Applied computing, Seoul,
Korea, 2007, 1012-1019.

Copyright © 2009 by the International Business
Information Management Association (IBIMA).
All rights reserved. Authors retain copyright for
their manuscripts and provide this journal with a
publication permission agreement as a part of
IBIMA copyright agreement. IBIMA may not
necessarily agree with the content of the
manuscript. The content and proofreading of this
manuscript as well as any errors are the sole
responsibility of its author(s). No part or all of this
work should be copied or reproduced in digital,
hard, or any other format for commercial use
without written permission. To purchase reprints
of this article please e-mail: admin@ibima.org.

