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Abstract 

The motor insurance is an important branch of 

non-life insurance in many countries; in some of 

them, coming first in total premium income 

category (in Romania, for example). In this paper 

we present the Gaussian mixture method to model 

the loss distribution of data from motor 

compulsory third part liability insurance. The 

parameters of the mixture are estimated using the 

Expectation Maximization (EM) algorithm. 
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1. Introduction 

The motor compulsory third part liability insurance 

(MTPL insurance) is the sole Romanian obligatory 

insurance, at least until the mandatory home insurance 

comes into force, in the 2009 Spring. 

During the previous year, the Romanian MTPL 

insurance owning a market share of  20,77% from the 

Romanian insurance industry and respectively 36,40% 

from the Romanian motor insurance market. 

Every year, the insurance companies pay damages that 

are larger than the policy earnings. The estimation for 

the 2008 of the average damage rate showed an 

increase by 15-20% of this indicator. The damage rate 

has continuously grown due to the large number of 

accidents, the relatively small amount of insurance 

premiums on the market and due to the drivers’ lack of 

discipline. Thus, the damage rate is around 65-70% for 

the MTPL insurance. Although the insurers have 

increased the MTPL tariffs every year, the policies are 

still an unprofitable line of business due to the high 

damages. 

As specified in Klugman et al. [5], „in the most 

general sense, all of actuarial science is about loss 

distributions because that is precisely what an 

insurance agreement is all about”. The policy holder 

is paid a random amount (the loss) at a random future 

time. Hence, a loss distribution is considered to be the 

probability distribution of either the loss, or the 

amount paid from a loss event. Evaluating the loss 

distribution for an homogeneous portfolio is of great 

importance for the insurance company, because this 

distribution is involved in developing probability 

distributions for the aggregate loss, and therefore in  

 

 

evaluating ruin probabilities, reserves, benefits etc., or 

in establishing the influence of different deductibles. 

In this paper we will consider the finite mixture 

method to model the loss distribution of data from 

automobile liability insurance. The data were kindly 

provided by a Romanian insurance company and 

consists of all the liability claims settled for an entire 

portfolio.  

In section 2 we present two examples, two different 

approaches to fit a loss distribution using a set of real 

data regarding the damages that were paid by a 

Romanian insurance company, for MTPL insurance.  

In section 3 we present the the methods that we used: 

the Gaussian Mixture Method (GMM) used to 

approximate the density of the loss distribution, and 

the EM algorithm to compute the maximum likelihood 

estimators of the parameters of the GMM.  

In section 4 we discuss the results. 

 

2. Paper content 

In this section we analyze two examples, two different 

approaches to fit loss distribution, using a set of real 

data regarding the damages that were paid by a 

Romanian insurance company, for MTPL insurance. 

The data set consists of 1161 settled claims. The main 

empirical characteristics of this data set are: 

 

Expected value=17,126,337.4 

Standard deviation=24,267,282.3  

Skewness=4.62 

Standard Error Skewness=0.07 

Kurtosis= 32.80 

Standard Error Kurtosis= 0.14 

Maximum value=310,000,000 

Minimum value=9,000 

 

In the following, we will consider two different 

approaches to fit a distribution: in the first approach 

we use the raw data, in the second approach we use the 

log data.  

 

First approach: raw data 

Using the algorithm described in section 3, we tried to 

fit the mixed density (2) to our data set for two 

different values of c:  c=2 and c=15. The fitting results 

are presented in Figures 1 and 2, while Table 1 

contains the mixtures parameters. 
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The histogram below shows data plotted on standard 

arithmetic scales. 

The solid lines represent the probability densities 

estimated using the finite mixture method. Here the 

mixed densities are univariate normal distributions, i.e. 

( ) ( )2

1

ˆ , ,
c

i i i

i

f x w xφ µ σ
=

=∑ . 

The number of densities, the mixing coefficients and 

the parameters of the densities are estimated using the 

EM adaptive algorithm. The red line correspond to 

c=2 densities and the green one to c=15 densities. 
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Fig 1. Histogram of the data set of settled claims (here 

we are using Scott’s Rule for the bin widths).
1
 

 

0 0.5 1 1.5 2 2.5 3 3.5

x 10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

 Fig 2. The empirical CDF (the staircase line in blue) 

                                                 
1
 RCA values is the Romanian term for MTPL values. 

 

versus the corresponding hypothesized CDF’s (here 

the red line for c=2 and the green line for c=15). 

It can be seen (Figure 1 and the result of the K-S test 

below) that if we use the raw data, the estimated 

cumulative density function and the corresponding 

hypothesized cumulative distribution function values 

computed using the GMM doesn’t fit well. Though, if 

we must choose between the two theoretical models, 

the second one (c=15) clearly performs better (see 

Figures 1 and 2). 

 
Table 1: The parameters of the mixtures from Fig 1 

 w µ  2
σ  

c=2 
0.86922 1.8548e+007 6.4899e+014 

0.13078 7.6754e+006 3.9614e+013 

c=15 

0.41895 8.7899e+006 4.2195e+013 

0.24905 7.9833e+006 3.8793e+013 

0.22368 1.9505e+007 1.6001e+014 

0.0028703 1.6429e+008 1.9308e+014 

0.046678 3.972e+007 1.5941e+014 

0.026936 5.6589e+007 1.9686e+014 

0.0098806 9.3195e+007 1.6907e+014 

0.0067904 7.4137e+007 1.5918e+014 

0.0027819 1.4544e+008 2.1019e+014 

0.003513 5.083e+006 7.2005e+013 

0.0031217 1.1004e+008 1.4911e+014 

0.0023252 1.268e+008 1.7793e+014 

0.00086133 3.1e+008 1.9843e+014 

0.00089951 2.1517e+008 2.017e+014 

0.0016588 1.7918e+008 1.9407e+014 

 

The results of the Kolmogorov-Smirnov test (here 

( ) ( ) ( ) ( )0 1
: ; :H F x G x H F x G x= ≠  where F(x) is 

the estimated cumulative density function –cdf- and 

G(x) the corresponding hypothesized cumulative 

distribution function values computed using the finite 

mixture method) with the significance level 0.05α =  

are given below. 

 

 H0 p-value KSSTAT
2
 CV

3
 

c=2 false 
3.4568e-

049 
0.2191 0.039712 

c=15 false 
9.4979e-

008 
0.084911 0.039712 

                                                 
2
 KSSTAT -the observed Kolmogorov-Smirnov 

statistic; 

 
3
 CV - the cutoff value for determining if KSSTAT is 

significant. 
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Second approach: log data 

This time we used the same algorithm described in 

section 3, but we tried to fit the mixed density (2) to 

our log-data set, again for two different values of c:  

c=2 and c=12. The fitting results are presented in 

Figures 3 and 4, while Table 2 contains the mixtures 

parameters.  

A logarithmic scale is a scale of measurement that uses 

the logarithm of a physical quantity instead of the 

quantity itself. Presentation of a data on a logarithmic 

scale can be helpful when the data covers a large range 

of values, just like in our case; the logarithm reduces 

this to a more manageable range. As it has been 

noticed, our dates make logarithmic scales especially 

appropriate.  

The two histograms below demonstrate the difference 

between the two scales when plotting the same 

“claims” data, i.e. the liability claims settled. In terms 

of comparison, the histogram of the log data provides 

a more complete description of the data since it looks 

more compact by pooling the data, and allows a better 

fit of the model. 

However, the logarithmic chart, using a logarithmic 

scale on the y axis, shows the percentage changes in 

the same rates. 
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 Fig 3 Histogram of the second log data set of settled 

claims (here we are using Scott’s Rule for the bin 

widths). 

 

The solid lines represent the probability densities 

estimated using the finite mixture method, here the 

mixed densities are univariate normal distributions, i.e. 

( ) ( )2

1

ˆ , ,
c

i i i

i

f x w xφ µ σ
=

=∑ . 

The number of densities, the mixing coefficients and 

the parameters of the densities are estimated using the 

EM adaptive algorithm. The red line correspond to 

c=2 densities and the green one to c=12 densities. 
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 Fig 4. The empirical CDF (the staircase line in blue) 

versus the corresponding hypothesized CDF’s (here 

the red line for c=2 and the green line for c=12). 

 

Table 2: The parameters of the mixtures from Fig 3 

 w µ  2σ  

c=2 
0.75048 7.1363 0.15337 

0.24952 6.5099 0.16683 

c=12 

0.48756000 7.1880 0.107080 

0.20362000 6.5503 0.066176 

0.21833000 6.8967 0.073772 

0.02686500 6.2430 0.062181 

0.01609100 7.9387 0.064838 

0.03285600 7.6770 0.062694 

0.00461110 5.8356 0.092219 

0.00356900 5.3295 0.081150 

0.00211490 8.1409 0.070830 

0.00131410 8.4006 0.069821 

0.00222120 4.7950 0.074949 

0.00086133 3.9542 0.074958 

 

The results of the Kolmogorov-Smirnov test with the 

significance level 0.05α =  are given below. 

 

 H0 p-value KSSTAT CV 

c=2 true 0.1753 0.032258 0.039712 

c=12 true 0.99227 0.012623 0.039712 

 



Sandra Teodorescu 

Communications of the IBIMA 

Volume 10, 2009 ISSN: 1943-7765 

154

We noticed that this time both models fit the data, but 

the second one (c=12) fits better. 

 

 

 

3. Theoretical Background - Research methods 

 

The Gaussian Mixture Method  

The finite mixture method assumes the density f(x) 

can be modeled as the sum of c weighted densities, 

with c n� . The most general case for the 

univariate finite mixture is 

( ) ( )
1

;θ

c

i i

i

f x p g x

=

=∑   (1) 

where ip  represents the weight or mixing coefficient 

for the i-th term, and ( );θig x  denotes a probability 

density, with parameters represented by the vector 

θi . To make sure that this is a bona fide density, we 

must impose the condition that 1 ... 1cp p+ + =  

and 0ip > . To evaluate ( )f x , we take our point x, 

find the value of the component densities ( );θig x  at 

that point, and take the weighted sum of these values. 

The component densities of the finite mixture can be 

any probability density function, continuous or 

discrete. In this paper, we confine our attention to the 

continuous case and use the normal density for the 

component function. Therefore, the estimate of a finite 

mixture would be written as 

( ) ( )2

1

ˆ ˆ ˆ ˆφ ;µ ,σ

c

FM i i i

i

f x p x

=

=∑  (2) 

where ( )2ˆ ˆφ ;µ ,i ix σ  denotes the normal probability 

density function with mean µ̂i  
and  variance 

2σ̂
i

. In 

this case, we have to estimate c-1 independent 

mixing coefficients, as well as the c means and c 

variances using the data. Note that to evaluate the 

density estimate at a point x, we only need to retain 

these 3c-1 parameters. With finite mixtures much of 

the computational burden is shifted to the estimation 

part of the problem.

 
The EM Training Algorithm 

The method for determining the parameters of a finite 

mixture of normal densities (i.e. a Gaussian mixture 

method – GMM) from a data set is based on 

maximizing the data likelihood. It is convenient to 

recast the problem in the equivalent form of minimizing 

the negative log likelihood of the data set 

( )
1

log
n

j

j

E L f X
=

= − = −∑
 

which is treated as an error function. There are two 

practical difficulties with this minimization problem. 

Firstly, the global minimum of E is −∞ . This is 

achieved when one of the Gaussian components 

collapses onto a data point so that i xµ =
 
and the 

corresponding variance tends to 0. To avoid this 

problem, the variance is checked at each iteration, 

and dangerously small values are replaced by larger 

ones. Secondly, there are often a large number of local 

minima which correspond to poor models of the true 

density function. A solution for this is to train models 

from many different starting points and to take care 

over the initialization of the models. 

Because the likelihood is a differentiable function of 

the parameters, it is possible to use a general purpose 

non-linear optimizer to find the minima of E. However, 

there are some advantages to using a specialized method, 

known as the expectation-maximization, or EM, 

algorithm (Dempster et al. [9]). This algorithm is 

simple to implement and understand, avoids the 

calculation and storage of derivatives, is usually faster 

to converge than general purpose algorithms, and can 

also be extended to deal with data sets where some 

points have missing values. The ideas behind the 

algorithm have also been applied to many other 

probabilistic models, including hidden Markov models 

and Kalman filters. With the use of variational 

methods, the EM algorithm has recently been 

extended to provide upper bounds on the error 

function E for classes of so-called probabilistic 

graphical models where the exact calculation of E is 

computationally intractable. 

The EM algorithm iteratively modifies the GMM 

parameters to decrease E. It is guaranteed to reduce E 

at each step until a local minimum is found. It is helpful 

to suppose that the data set was sampled from an 

(unknown) mixture model. If we knew which 

component each data point jX  had been sampled 

from, then it would be straightforward to estimate the 

model parameters. Let iI  denote the indices of the 

data points sampled from component i, and n the 

total number of data points. Then the prior 
i

p  would 

be given by 

i

i

I
p

n
=  

the mean iµ  by 
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1

i

i j

i j I

X
I

µ
∈

= ∑  

and the covariance by a similar formula that depends 

on the form of the covariance matrix; for example, for 

spherical covariance 

22 1

i

i j i

i j I

X
I

σ µ
∈

= −∑ . 

Of course, we don't know which component generated 

each data point, so instead we consider a hypothetical 

complete data set in which each data point is labeled 

with the component that generated it. So, for each 

data point jX , there is a corresponding random 

variable jz , which is an integer in the range 

1, ,cK . We write jy  for the complete data point 

( ),j jX z  and w for the parameters in the mixture 

model. The EM algorithm generates a sequence of 

estimates 
( )m

w  starting from the initial parameter set 

( )0
w . 

First we write down the likelihood of a complete data 

point if z i= : 

( )( ) ( ) ( )

( ) ( )

, ,

i

p x z i w p x z i w p z i w

p x p z i wθ

= = = =

= =
 

where iθ  are the density function parameters (mean 

and variance) for i component. The likelihood of x can 

be obtained by marginalizing over z which, since it is a 

discrete variable, is simply a matter of summing the 

above formula over all its possible values: 

( ) ( ) ( )
1

c

i

j

p x w p z i w p x θ
=

= =∑  

Comparing this with (1), we see that the 

probabilities ( )p z i w=  are playing the same role as 

the mixing coefficients. 

Given a set of parameters 
( )m

w  we would like to use 

class labels i
z  and the above formulas of the ip , iµ  

and 2
iσ  to estimate the next set of parameters 

( )1m
w

+
. 

As we don't know the class labels, but do know their 

probability distribution, what we can do is to use the 

expected values of the class labels given the current 

parameters. We form the function 
( )( )m

Q w w  as 

follows: 

( ) ( )( ) ( )log ,
m m

j jQ w w E p y w p z X w
   
   
   

=  

( ) ( )( )
1 1

log , ,
c n

m
j j j j

i j

p X z w p z X w
= =

 =  ∑∑  

( ) ( ) ( )
1 1

log log
c n

m
i j i j

i j

p p X p i Xθ
= =

 = + ∑∑ , 

where 

( ) ( ) ( )

( ) ( )

( ) ( )

1

: ,

m m
ji i

m m
j j j c

m m
ji i

i

p p X

p i X p z i X w

p p X

θ

θ
=

 
 

   
 
   

 
 

= = =

∑

 

is the expected posterior distribution of the class labels 

given the observed data. Note that 
( )( )m

Q w w  is a 

function of the parameters i
p  and i

θ  while 
( )m

ip  and 

( )m

iθ  are fixed values. The calculation of Q is the E-

step of the algorithm. To compute the new set of 

parameter values
( )1m

w
+

, we optimize 
( )( )m

Q w w  , i.e. 

( ) ( )( )1
arg min

m m

w

w Q w w
+

= . 

This is the M-step of the algorithm. 

To use the EM algorithm, we must have a value for the 

number of terms c in the mixture. This is usually 

obtained using prior knowledge of the application 

(the analyst expects a certain number of groups), 

using graphical exploratory data analysis (looking for 

clusters or other group structure) or using some other 

method of estimating the number of terms. In our 

case we consider c=2. 

Besides the number of terms, we must also have an 

initial guess for the value of the component 

parameters. Once we have an initial estimate, we 

update the parameter estimates using the data and 

the equations given below. These are called the 

iterative EM update equations, and we provide the 

univariate case. The multivariate case follows easily. 

The first step is to determine the posterior probabilities 

given by 
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( )
( )

2ˆ ˆφ ;µ ,
ˆ ; 1, ..., ; 1, ...,

ˆ

i j i i

ij

j

p
i c j n

f

σ
τ = = =

x

x
    (3) 

where îjτ  represents the estimated posterior 

probability that point jx  belongs to the i-th term, 

( )2ˆφ ;µ ,j i iσx  is the normal density for the i-th term 

evaluated at jx , and 

( ) ( )2

1

ˆ ˆ ˆφ ;µ ,

c

j k j k k

k

f p σ
=

=∑x x   (4) 

is the finite mixture estimate at point jx .  

The posterior probability tells us the likelihood that a 

point belongs to each of the separate component 

densities. We can use this estimated posterior 

probability to obtain a weighted update of the 

parameters for each component. This yields the 

iterative EM update equations for the mixing 

coefficients, the means and the covariance matrices. 

These are 

1

1
ˆ ˆ ,

n

i ij

j

p
n

τ
=

= ∑    (5) 

1

ˆ1
µ̂ ,

ˆ

n
ij j

i

ij
n p

τ

=

= ∑
x

   (6) 

( )
2

2

1

ˆ µ̂1
σ̂

ˆ

n
ij j i

i

ij

x

n p

τ

=

−
= ∑   (7) 

The steps for the EM algorithm to estimate the 

parameters for a finite mixture with multivariate 

normal components are given here (see Enachescu, 

[3]). 

EM Algorithm for finite mixtures : 

Step 1 Determine the number of terms or component 

densities c in the mixture. 

Step 2 Determine an initial guess at the component 

parameters. These are the mixing coefficients, means 

and covariance matrices for each normal density. 

Step 3 For each data point jx , calculate the 

posterior probability using Equation 3. 

Step 4 Update the mixing coefficients, the means and 

the covariance matrices for the individual components 

using Equations 5 through 7. 

Step 5 Repeat steps 3 through 4 until the estimates 

converge. 

Typically, step 5 is implemented by continuing the 

iteration until the changes in the estimates at each 

iteration are less than some pre-set tolerance. Note 

that with the iterative EM algorithm, we need to use 

the entire data set to simultaneously update the 

parameter estimates. This imposes a high 

computational load when dealing with massive data 

sets. 

4. Conclusions 

From Figure 1, we notice that the raw data set 

histogram corresponds to a strongly asymmetric 

density with right heavy tail. Also, based on the fact 

that the Kolmogorov-Smirnov test rejected the density 

(2) assumption for raw data, we considered that 

applying the logarithmic function to the initial data 

(possible since all data are positive) we could pool the 

data and obtain a better fit of the model. Our procedure 

proved to be correct, since the Kolmogorov-Smirnov 

test accepted the density (2) assumption for the log-

data. The best fit is for c=12, as expected (usually, 

more parameters means a better fit).  

In conclusion, our log-data can be modelled by a 

Gaussian mixture model, which means that the raw 

data could be modelled by a product of lognormals 

model. 
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