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Abstract 

Many topics related to stability of equilibrium, 
equilibrium selection, transitional dynamics, the 

long-run evolutionary dynamics of economic 
processes or other microeconomic or 
macroeconomic concepts are of the most 
importance in economic studies and often involve a 

set of optimization techniques able to provide the 
best solution under specific conditions.  

One of the main issues that should be studied as an 
optimization algorithm is applied is the total time 

required for that process to get the optimum. Even 
in this era of the New Technologies, as computers 
are designed to work faster and faster, it is 
welcomed to know to which extent a specific 

function is welcomed to be optimized by using a 
specific algorithm, or to which extent the time 

required by that algorithm to get the optimum is a 
polynomial or an exponential one. 

Among the classical methods that we can use to 
drastically reduce the dimension of the transition 
matrix P of the Markov chain attached to (1+1)-
EA, the comassability of the states is a very 

important one. For some fitness functions this 
comassability is possible, but for other it is not. 

This paper aims at making an exact description of 
certain unimodal functions which lead to a 
transition matrix P comassable in relation with a 
partition of the states space. 

Keywords: Evolutionary Algorithm, time to get 
the optimum, commasability 
 

1. Introduction 

Many topics related to stability of equilibrium, 
equilibrium selection, transitional dynamics, the 
long-run evolutionary dynamics of economic 
processes or other microeconomic or 
macroeconomic concepts are of the most 
importance in economic studies and often involve a 
set of optimization techniques able to provide the 
best solution under specific conditions. 
Evolutionary Algorithms can be applied to get 
solutions for this sort of economic problems and it 
is proved that in many situations they can lead to 
good results (see for example [1]). 

In fact, it is widely accepted that Evolutionary 
Algorithms are very important tools in 
Econometrics, as some models have been proven to 

be computationally intractable sometimes, due to 
their complexity (see [5]). Under such conditions, 
some Evolutionary Algorithms have been taken into 
consideration by specialists as method for 
optimization of various econometric models (see for 
example [3] or [11]) and (1+1) EA is one of them. In 
spite of the fact that this algorithm is a very simple 
one, some authors agree with the possibility of using 
simple versions of Evolutionary Algorithms to 
describe more complicated forms of them and to 
solve difficult problems using this sort of methods 
(see [7]).  

Meanwhile, one of the main issues that should be 
studied as an optimization algorithm is implemented 
is the total time required for that process of 
minimizing or maximizing to get the optimum. Even 
in this era of the New Technologies, as computers are 
designed to work faster and faster, it is more than 
welcomed to know to which extent a specific 
function is recommended to be optimized by using a 
specific algorithm, or to which extent the time 
required by that algorithm to get the optimum is a 
polynomial or an exponential one (see [6], [9] or 
[10]). In this context, we will focus our attention on 
one of the classical methods that we can use to 
drastically reduce the dimension of the transition 
matrix P of the Markov chain attached to (1+1)-EA, 
is the comassability of the states. For some fitness 
functions this comassability is possible, but for others 
it is not. This paper aims at making an exact 
description of certain unimodal functions which lead 
to a transition matrix P comassable in relation with a 
partition of the states space. 

2. Preliminary results 

We already know that a transition matrix P is 
comassable in relation with a partition S = 
S(1)US(2)U…US(m) of the states space, if and only 
if the probability value p(x, S(j)) is the same, for 
every x from S(k) and for every pair of sets S(k) and 
S(j) where k and j rank between 1 and m. We 
mention that the results from theorems 2.1 and 2.2 
are classical results used in EA study (see for 
example [9]) and their presentation is due to the fact 
that the proofs are personal and use some techniques 
which are very important for the future research 
papers. We will use the notation B(L) as the product 
{0, 1}x{0, 1}x … x {0, 1} for L times.  

Theorem 2.1. The Mutation Matrix M is comassable 
in relation with the partition S as above, where we 
define the S(i) as the set of all x from B(L) with 
unitary norm and the mutation operator m(x, y) 
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defined as 1-q if x = y, q/L if the Hamming 
distance between x and y is equal to 1 and 0, 
otherwise.  

Here, q ranking between 0 and 1 it is a probability 
value, and x and y belong to the defined space. 

Proof: 

Let S(i) and S(j) two sets of the partition S and x 
from S(i) be arbitrarily fixed. Then: 

M comassable iff m(x, S(j)) has the same value, for 
any sets of the partition S and for every x from S(j). 

We have:  

m(x, S(j))= ∑m(x, y) where y takes all possible 
values in S(j) and the distance between x and y is 
equal to 1.  

For x belonging to S(i) fixed, we want to find the 
number of the y from S(j) so that the distance 
between x and y is 1. But, if this distance is 1, we 
see that x and y must have only one different 
position, so  y belongs to S(i-1) or to S(i+1). Then, 

m(x, y) = 0, if j ≠ i-1 and j ≠ i+1 

We compute the number of y belonging to S(i-1) 
and to S(i+1)so that the distance between x and y is 
equal to 1. Every x from S(i+1) has exactly i+1 
positions with 1, so that the number of y from B(L) 
with distance between x and y is 1, is L-i. Then, 
m(x, S(i+1)) =q(L-i)/L, value which does not 
depend on the particular choice of x from S(i). The 
same argumentations show that m(x, S(i-1) = qi/L 
and this value is also independent from x belonging 
to S(i). 

Then: m(x, S(j)) takes the following values: 1-q, if 
j=1; qi/L if j=i-1; q(L-i)/L, if j=i+1 and, of course, 
0 otherwise. 

The values obtained above only depend on the 
index i and not on the particular individual x, then 
the matrix M is comassable in relation with the 
partition mentioned.  

Lemma 2.1. For every S(i) defined as above, the 
distance between two arbitrary x and y from 
S(i) takes an odd value. 

Proof: 

If x=y, then the distance is 0, so it takes an odd 
value . 

If x ≠ y, then we can state that there exists a value k 
belonging to the set {1, 2, …, L}  so that the k 
positions of x and y are distinct, hence the absolute 
value of the difference between these values is 1. It is 
obvious that, starting with an x from S(i) arbitrarily 
fixed and modifying its positions “1”, we’ll generate 
the whole set S(i), hence we can obtain y too. 

Generally, changing k positions of 1 with k positions 
of 0 leads to an individual y so that the Hamming 
distance between x and y being 2k, if 2k≤L.  q.e.d. 

We define now the set Di(x) as the set of all y from 
B(L) so that the distance between x and y is 1. 

Proposition 2.1. Let x from B(L) be arbitrarily fixed. 
Then, Di(x)=x+S(i), for every i belonging to {0, 1, 2, 
…, L}, where x+S(i)={x+y│y belongs to S(i)}. 

Proof: 

Let x from B(L) and z from S(i). Then, there exists 
two subsets, A and B, of {0, 1, 2, …, L}, say: A={j1, 
j2, …, jk}, B={r1, r2, …, ri}, so that: x=∑e(s), s 
belongs to A and  y=∑e(t), t belongs to B. Here, e(s) 
is the s – row in the unit matrix of L dimension. 

The equality of the two sets results, by considering 
four cases:   A∩B is empty, A is included into B, B is 
included into A, and the case four, where the 
previous three situations are not  true. All the studies 
cases lead to the same conclusion, that Di(x)=x+S(i), 
for every i belonging to {0, 1, 2, …, L}. Q.e.d. 

Generalize to Lemma 2.1. Let x’ from B(L) be an 
arbitrary element of the space. Then, for any x and y 
from Di(x’), the distance between x and y takes an 
odd value. 

Theorem 2.2. The Mutation Matrix M=(m(x,y)) is 
comassable in relation with the partition Sand the 
mutation operator m(x,y) defines as  

p
H(x,y)

 ·(1-p)
L-H(x, y)

,  

for x, y belonging to B(L). Here, H(x, y) is the 
Hamming distance between x and y. 

Proof: 

Let S(i), S(j) two sets of the partition and let x from 
S(i) arbitrary fixed. Then: 

M(x, S(j))=∑m(x,y)   (2.1.) 

Here, y taked all the values in S(j). Let x from B(L), 
be arbitrary. Then, the number of the individuals 
which can be at distance Hamming d by x is d

LC , d 
from {0, 1, 2, …, L} set.  
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We define, for every d as above, the set Dd(x) with 
elements y from B(L) such that the distance 
between x and y takes the value d. (2.2.) 

In fact, we defined a B(L) - partition, namely: 

D(x)={Dd(x)│d=0, 1, …, L}    (2.3.) 

It can be shown that m(x, S(j)) can be written as 

 ∑card(S(j)∩Dd(x))p
d
 (1-p)

L-d
   2.4.) 

The problem is, now, to determine the number of 
the elements of )x(DS dj ∩ , to see that this value 
is independent from the x choice in S(i).  For this 
purpose, a number of three different cases is taken 
into consideration, namely j=i, j>i and j<i. This 
study leads to the conclusion that the conclusion of 
the theorem is true. 

Consequence 2.1. With any mutation operator 
we’ll construct the matrix M, the propriety of 
comassability is valid in relation with any partition 
D(x), x from B(L). 

Proof: 

It is a consequence of the theorems 2.1. and 2.2. 
and of the proposition 2.1. 

3. The comassability of the transition matrix P 

In our study we’ll start with a classical problem, 
named the count of the number of 1 from a binary 
vector. For a (1+1)-EA, this problem asks to 
minimize the number of zeros.  

Let f : B(L) → R, f(x) = L -║x║1 . We can see that: 

f│S(i) = L-i, for any i from {1, 2, …, L-1}    (3.1.) 

We can also see that for any i< j in {1, 2, …, L}, 
we have 

f│S(i)< f│S(j) . (3.2.) 

In the construction of the matrix P, the relation 
(3.1.) is very important. The form of the elements 
of P, we’ll see that the chain will never leave a 
current state x belonging to S(i), unless for transit 
in a state form a S(k) with k>1.  

We can say that p(x, y) is equal to m(x, y) if f(y) < 
f(x), the same p(x, y) is 0 if f(y) ≥ f(x) and x ≠y, 
and finally p(x, y) is equal to ∑m(x, z) if y=x and if 
f(z) ≥ f(x), for any x, y from B(L). 

Consequently, the development of the algorithm does 
not depend on the concrete state x in which we are at 
a certain point, but on its belonging to a set iS  of the 
partition of the states of the space. 

Bặck (1992) found out the elements of the matrix P, 
and the average numbers of steps necessary to reach 
the optimum was approximated by Mǘhlenbein 
(1992). Both results were obtained by using classical 
working instruments, but this led to pretty 
complicated results, so that even for this simple 
function the theoretical study of (1+1)-EA proved to 
be difficult. 

The key element in the (1+1)-EA description needed 
for optimizing this function is (3.1). Thus it seems 
naturally to wonder which the modular functions 
meeting this condition are and how many such 
functions exist. Some of the conclusions that derive 
from studying these functions can be subsequently 
applied in order to describe similar behaviours for 
other functions, being them unimodal or not.  

Let f : B(L) → R, be modular.  

Proposition 3.1. 

f│S(i) = ct, for any i from {1, 2, …, L-1}, then f(x) = 
c0+c║x║1 where c0 and c belong to R 

Proof: 

“←”is obvious:  

f│S(i) = c0+c║x║1 for any i from {1, 2, …, L-1}, so it 
is constant on  S(i) ,for any i from {1, 2, …, L-1}. 

“→” From f modular it follows f linear, so  

f(x)=c0+c1x1+ c2x2+…+ cLxL. 

From f│S(i) = ct, for any i from {1, 2, …, L-1} we get 

f(e(i))= f(e(j)), for any i≠j,  I, j from {1, 2, …, L} 

Then: f(e(i))= f(e(j)) ↔ c0+ci= c0+cj ↔ ci= cj for any 
i≠j . Let c be the common value of these coefficients: 

f(x)=c0+c(x1+ x2+…+ xL) = c0+c║x║1, q.e.d. 

On the set FFFF of the functions f : B(L) → R, we define 
a relation “≈”, thus: 

f ≈ g ↔ for any x, y from B(L),  [f(x)<f(y) iff 
g(x)<g(y)]  

It can be proved that this is a relation of equivalence 
on F. In relation with it, the set F can be divided into 
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classes of equivalence. The next problem which is 
naturally raised refers to the structure of the class 
measured by a modular function like the one in the 
above proposition. It can be proved that any 
element from a class generated by a modular is a 
unimodal function. But, if we proved that all the 
elements that belong to f for f(x)=c0+c║x║1 where 

c0 and c belong to R are modular functions, we 
would draw the conclusion that we have not found 
any extra information about the number of 
unimodal functions for which the application of the 
algorithm is justified. The next example will prove 
that: 

Proposition 3.2.  If f : B(L)→R having the form 
f(x)=c0+c║x║1 , c0 and c belong to R, then there 
exists g from the class fˆ of f, with g unimodal but 
no modular. 

Proof: 

Let f : B(L)→R, f(x)=c0+c║x║1 , c0 and c belong to 
R, for which: 

f│S(i) = c0+c·j, j = 0, L. 

Without limiting the generality we could 
presuppose that the value of c is positive. We 
consider now the function f : B(L)→R,, g from fˆ, 
for which we are given the values: 

g(00…0)=c0 – 2; g│S(1)=c0+c-2; g│S(2)=c0+2c+1; 

The other values of g, so on the other elements of 
the partition, can be chosen arbitrarily so that we 
maintain the condition g from fˆ.  

We presuppose that g is modular. Then, from the 
previous preposition we deduce that there exist a, b 
from R such that g(x)=a+b║x║1. From g(00…0) = 
c0 – 2, we get a = c0 – 2. Also, from g│S(1) = c0+c-2 
we get b = c0 + c – 3. So, g(x)= c0 – 2+ (c0 + c – 
3)·║x║1.  

On the other hand, g│S(2)=c0+2c+1 so we find 
c0=9/2. The presupposition that g would be 
unimodal is false and the proposition is thus 
proved. 

Conclusion 3.1: Thus we proved that a modular 
function f : B(L) → R, having the form f(x) = 
c0+c║x║1 , c0 and c belong to R, also covers among 
the elements of the class it generates unimodal 
functions but no modular ones. We know about the 
latter now that an average working time of (1+1)-
EA, of the type O(L·logL) will correspond to them. 

Now let f : B(L) → R, have the form f(x) = 
c0+c║x║1 , c0 and c belong to R.  and g : B(L)→R, 
g from fˆ. From f│S(i) =c0+c·j, j=0, L, we deduce 

that obviously also g will have the same property, 
that is  

g│S(j) = ct, j=1, L-1. 

We study now the next possibility: is there g 
unimodal but no modular, so that in the class 
generated by this there is no modular function? To 
answer this question, we will first prove a helping 
result. 

Proposition 3.3. Let f : B(L)→R, be unimodal, with 
f│S(j) = αj, for any j=1, L-1. Then, for any i<j, we 
prove that αi < αj  or αj < αi  , with i, j belong to {0, 1, 
…, L}. 

Proof: 

We absurdly presuppose that there exists I from {1, 
1, …, L-1}such that αi < αi+1 and αi-1 < αi and let x 
belong to S(i). Then, from f│S(i) = αi, for any i=1, L-1 
and as  D1(x) included in S(i+1)US(i-1), we get that 
for any y in D1(x), f(x)<f(y) so, so x is a local 
solution of f. As the choice of x in S(i) was arbitrarily 
chosen, we deduce that this is a local solution for f. 

On the other hand, for any x and y in S(i), ║x-y║1=2, 
so the function f has more local solutions. This 
contradicts the unimodality condition for f and the 
proposition is thus proved.  

Now, let f : B(L) → R, unimodal, with f│S(j) = αj, for 
any j=1, L-1, for which α0< α1< … < α L. Let g : B(L) 
→ R, g(x)= c0+c║x║1. We prove that there is a 
choice of the coefficients c0 and c so that g belongs to 
the class fˆ.   

g∈  fˆ ═› g│S(0)< g│S(0) < g│S(1)< … < g│S(L), that is: 
c0< c0+c<c0+2c< … < c0+Lc. This is possible indeed, 
for c>0. 

The condition α0< α1< … < α L is not restrictive, in 
the sense that if the contrary inequality takes place, 
we choose c<0. 

Thus we showed the next result, which gives answers 
for the questions we previously asked: 

Proposition 3.4. The classes generated by the 
modular functions having the form f : B(L) → R, 
with f(x)=c0+c║x║1 , c0 and c belong to R, cover all 
the unimodal functions g : B(L) → R having the 
property g│S(j)=ct, j= 1, L-1. 

Because the class measured by a function f like the 
one in the enounce is completely described by the 
inequality between the values of the function, it is 
obvious that f(x)=c0+c║x║1 can generate only two 
classes, for the distinct cases c<0 and c>0.  
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Observation 3.1. The modular functions we have 
discussed so far, as well as the unimodal elements 
of the classes they generated, have the particularity 
that they reach their minimum either in 00…0 (for 
c>0), or in 11…1 (for c<0). 

So, a natural question arises: how do the previous 
conclusions structure themselves for a modular 
function that reaches its minimum in a point x* 
from B(L) arbitrarily chosen, so not especially 
00…0 or 11…1? For such a function could we find 
in certain cases another partition of the space of the 
states in relation to which the passing matrix P 
might be comassable? We shall prove that the 
answer for this question is positive. 

The first step towards this generalization is to 
watch the already obtained results, from another 
angle. The modular function f(x)=c0+c║x║1   
reaches its minimum in 00…0 for c>0 and in its 
binary complement, for c<0. The partition in 
relation to which the passing matrix P will be 
comassable, is S(0), S(1), …, S(L), that is 
D(00…0). The natural generalization that results 
from this point of view is the following: 

Let f : B(L) → R be unimodal, with x* from B(L) 
local/global solution. If the real constants α0, α1, … 
, α L-1 exist so that  

f│Di(x*)= αi, i= 1, L-1   (3.1.) 

and if i < j we have αi< αj, or αj< αi, then the 
passing matrix P associated with the Markov chain 
of (1+1)-EA and with the function f is comassable 
in relation to the partition D(x*). 

We consider the modular function f : B(L) → R, 
having the property that x* from B(L) is a global 
minimum and f│Di(x*)= αi, i= 1, L-1, f(x) = c0+c1x1 

+c2x2 … +cLxL. 

From x* belongs to B(L), we get that there exists j 
from {0, 1, …, L}  so that x* can be written as x* = 
∑ek, where k∈M a subset of {1, …, L}, with 
CardM = j. Then, the minimum value of f is: 

f(x)= c0+∑ck = f*, k ∈M 

From the working hypothesis we have: f│D1(x*)= 
ct., where: 

D1(x*) = {x ∈  B(L) │x = x*+ ek, k ∈M arbitrary 
chosen} U {x ∈  B(L) │x = x*+ ek , k ∉M 
arbitrary chosen} 

Let i1, i2∈M, i1≠i2, be arbitrarily chosen and let: x 
= x*+ei1 and y = x*+ei2. Obviously, x, y ∈  D1(x*) 
and from f│D1(x*)= ct we get f(x) = f(y) and finally 
ci1= ci2, for any i1 ≠ i2, with i1, i2 from M. 

Let c be the common value of the coefficients ci, 
i∈M. Then: 

f(x)= c0+c∑xk + ∑cj xj  where k ∈M and j ∉M.  

Let i1, i2∉M, i1≠i2, be arbitrarily chosen and let: x = 
x*+ei1 and y = x*+ei2.. Analogously, x, y ∈  D1(x*) 
and we get ci1= ci2, for any i1 ≠ i2, with i1, i2∉M..  

Let c’ be the common value of all the coefficients ci, 
i∉M.. Then: 

f(x)= c0+c∑xk + c’∑xj  where k ∈M and j ∉M. 

But, because Card M = j, we get that Card(non)M = 
L-j and then f(x*) = c0+cj =  f*.  

We can easily prove that c’ = -c and this shows that 
we proved the following result: 

Proposition 3.5. Let the modular function f : B(L) → 
R, having the  property that x*∈B(L) is a global 
solution for f. If x* = ∑ek, where k∈M a subset of 
{1, …, L}, with CardM = j  and if f│Di(x*)= αi, i= 1, L-
1, then:  

f(x)= c0+c(∑xk - ∑xj)  where k ∈M and j ∉M. 

Similar arguments but with a more complicated 
writing make all the previously proved results, for 
unimodal functions with the local solution 00…0, 
remain valid for the general case as well. Each 
modular function having the form of the function 
from the previous proposition generates two distinct 
classes of unimodal functions: for c>0 we obtain the 
class of functions that have the global solution x*, 
and for c<0 the result is the class of unimodals with 
the global solution x**. Moreover, any unimodal 
function g having the property g│Di(x*)= αi, i= 1, L-1, 
will belong to one of these two classes. 

Because all the functions g∈ fˆ have the same global 
solution as that of f, we exclude the overlaying of 
two classes generated by modular functions having 
the property (3.1.) and distinct global solutions. 

A new conclusion that results from this paper is: 

Conclusion 3.2. Let f : B(L) → R be a unimodal 
function, with x* local/ global solution. If f│Di(x*)= αi, 

i= 1, L-1 and if αi< αj  for any I, j from {0, 1, …, L}, 
then the passing matrix of the Markov chain for 
(1+1)-EA can be comassed in relation to the partition 
D(x*) of the space of the states. 

Proof: 

Unlike the case that deals with the mutation matrix, 
whose elements do not depend on the objective 
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function, the study of the comassability of P will be 
performed after making various choices for f.  

We will present the proof for this result for the 
particular case when x

0
 = 00…0. This will not 

restrain the generality of the result, but it will make 
writing easier, the proof for the general case 
following the same steps in fact. So, we will show 
that: If f│S(i)= αi, i= 1, L-1 and if for any I, j from 
{0, 1, …, L}, i≠j we have αi< αj, then the passing 
matrix of the Markov chain for (1+1)-EA can be 
comassed in relation to the partition D(00…) of the 
space of the states. 

Let x∈B(L), x∈S(i), be for an index i arbitrarily 
fixed, i = 1, L. Then, we notice that for y∈B(L), 
we have: f(y) < f(x) iff y∈S(j) with j>i. 

Let i, j∈{1, 2, …, L} be two arbitrary indices and 
let S(i), S(j) be the sets of the partition. Let x∈S(i). 
We show that p(x, S(i)) does not depend on 
particularly choosing x belonging to S(i). So, we 
compute p(x, S(j)), where p(x, S(j)) = ∑p(x, y) 
where y∈S(j). There are to be discussed three 
cases: j=i, if i < j and i > j. In each situation, we 
compute p(x, S(i)) = ∑p(x, y) where y∈S(i) and we 
find that p(x, S(i)) acquires a value independent 
from the choice we make for x. We then prove that 
the matrix P is comassable in relation to D(00…0), 
q.e.d. 

Observation 3.2. The condition αi< αj , for i < j, 
imposed in this enounce, is not essential the 
comassability property, but for describing the 
unimodality. 

Conclusion 3.3. Any unimodal function f : B(L) → 
R, with x* local/ global solution, with f│Di(x*)= αi, 

i= 1, L-1 and for which any i<j chosen from {0, 1, 
…, L} lead to αi< αj, is part of a class generated by 
a modular function having the same properties.  

4. Conclusions 

In this paper we focused our study on the issue of 
comassability of states for a matrix describing an 
Evolutionary Algorithm. We found that a modular 
function f : B(L) → R, having the form f(x) = 
c0+c║x║1 , c0 and c belong to R, covers among the 
elements of the class it generates unimodal 
functions but no modular ones.  

We also found that if f : B(L) → R is an unimodal 
function, with x* local/ global solution. If f│Di(x*)= 
αi, i= 1, L-1 and if any i<j chosen from {0, 1, …, L} 
lead to αi< αj, then the passing matrix of the 
Markov chain for (1+1)-EA can be comassed in 
relation to the partition D(x*) of the space of the 
states.  

Finally, we proved that any unimodal function f : 
B(L) →R, with x* local/ global solution, with 
f│Di(x*)= αi, i= 1, L-1 and for which any i<j chosen 
from {0, 1, …, L} lead to αi< αj, is part of a class 
generated by a modular function having the same 
properties. 

We then were able to described some classes of 
fitness functions for which the (1+1) EA leads its 
optimum in a polynomial time, which is helpful both 
for direct using this optimization algorithm and for 
developing the study for more complicated situations. 
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