
IBIMA Publishing

Communications of the IBIMA

http://www.ibimapublishing.com/journals/CIBIMA/cibima.html

Vol. 2010 (2010), Article ID 552843, 13 pages

DOI: 10.5171/2010.552843

Copyright © 2010 Samer Hanna and Ali Alawneh. This is an open access article distributed under the

Creative Commons Attribution License unported 3.0, which permits unrestricted use, distribution, and

reproduction in any medium, provided that original work is properly cited. Contact Author:

Samer Hanna, e-mail: Jordan, shanna@philadelphia.edu.jo

An Approach of Web Service Quality

Attributes Specification

Samer Hanna and Ali Alawneh

 IT Faculty – Philadelphia University, Jerash, Jordan

Abstract

Web Services are considered a new way of building software applications based on Services
that are available through the Internet. However, Web Services still face many problems that
are limiting their adoption. One of the causes of this problem is the lack of metadata about
the quality attributes of Web Services, which make Service Requesters reluctant to integrate
Web Service with their applications. This paper proposes a novel ontology that describes a
model of the requester-oriented Web Services' quality attributes. The ontology is based on
previous quality models which have been refined and modified specifically to address the
quality issues as they relate to the requester of Web Services. Also an analysis will describe
how some of the quality attributes in the previous model can be evaluated using different
types of test cases.

Keywords: Service Oriented Architecture, Web Services, Quality Attributes, Testing

1. Introduction

Service Oriented Architecture (SOA) is

not a new concept – although it has been

around for over a decade now; SOA has

gained extreme popularity lately among

researchers and practitioners due to Web

Services. While many believe that Web

Services are SOA, they are in fact an

implementation (or realization) of SOA

based on a set of open XML-based

technologies or standards.

Web Services are considered a new

paradigm to build software application. In

the Web Service paradigm, the requester

of a Web Service can only see an interface

which contains information about the

operations provided by the Web Service

and how to bind to this Service, the

requester need not worry about how this

Web Service was implemented or where

it is located. Although similar to previous

paradigms especially to component based

development, one of the main differences

is that Web Services rely on open

standards or technologies for

communication and integration of

heterogeneous applications.

However, Web Services still face many

challenges. One of those is that the

current Web Services standards, such as

WSDL, only describe the functional

aspects of Web Services and not the non-

functional aspects related to the Quality

of Service (QoS)0. Another challenge is

that there is no shared understanding of

quality attributes of Web Services among

Communications of the IBIMA 2

providers and requesters – in other

words, terms for quality attributes are

used without following a standard or

clear definition of their meaning.

This work aims at producing an ontology

that will help in providing the requesters

of Web Services with more semantics or

metadata about the quality attributes, and

also providing a shared understanding for

those. OWL (Ontology Web Language) 0 is

used to describe the quality attributes of

Web Services.

This paper is organized as follows:

Section 2 presents a background on

relevant concepts and terms used in the

rest of the paper. Section 3 discusses the

analysis of different quality models in

order to identify quality attributes

relevant to requesters of Web Services.

Section 4 shows what quality attributes

can and cannot be assessed by applying

current and adapted testing techniques.

In Section 5, we discuss the proposed

ontology for the quality attributes of Web

Services. An example application of the

ontology is presented in section 6, and

section 7 concludes this work and

discusses future work

2. Background

2.1. Service-Oriented Architecture (SOA)

SOA is an architectural style for building

distributed application that depends on

loosely coupled services that are available

on the Internet. SOA consists of four main

entities: service requester, service

provider, service registry, and contract:

• Service Requester: The Service

requester could be any type of

software that needs a specific Service;

the requester can be a human, an

application, or even another Service.

• Service Provider: The Service

provider implements a Service and

publishes his Service's contract or

description in a registry.

• Service Registry: The Service registry

stores contracts from Service

providers.

• Service Contract (Description): The

contract specifies what tasks or

methods a certain Service provides

and also how the requester of a

service will bind to the provider. The

contract may also specify Quality of

Service (QoS) levels.

The Service provider publishes a

description of his Service in the registry.

The Service requester asks the registry

about Services that accomplish a certain

task, and once the registry founds the

right Service, it returns the Service

information (such as the contract

location) to the Service requester, which

in turn uses the information in the

contract to bind to the Service.

2.2. Web Services

Web Services implement SOA using open

standards such as XML (eXtensible

Markup Language), SOAP (Simple Object

Access Protocol), WSDL (Web Service

Description Language), and UDDI

(Universal Description, Discovery, and

Integration). Web Services are used

mainly for the interoperability between

heterogeneous applications over the

Internet.

There is no universally accepted

definition of Web Services, as it has been

under debate for quite some time. An

extensive literature survey on Web

Services showed us that none of current

definitions (given by different people and

3 Communications of the IBIMA

organizations) contained all the relevant

characteristics of Web Services. In the

context of our work, our (proposed and

adopted) definition for Web Service

includes those relevant characteristics for

our work, as it is defined as follows:

Web Services are network (Internet)

based modular applications designed to

implement SOA, and support

interoperable, loosely coupled,

integration of heterogeneous application.

Web Services are discovered using UDDI

and It has an interface that is describe in

WSDL, Other systems interact with the

Web Services in a manner prescribed by

its description using SOAP, these SOAP

messages (as well as all other

technologies of Web Services) are based

on XML and typically conveyed using

HTTP.

Web Services implement most of the SOA

characteristics using the previous

technologies. However, there are other

characteristics of SOA that are still not

implemented by Web Services. For

example, few specifications provide QoS

levels for a Service and they do not cover

all the quality attributes of Web Services.

In addition, the requesters can get the

WSDL document of a Web Service without

using UDDI (registry) and this is violation

to the SOA.

2.3. Testing

Testing is a quality assurance Software

Engineering technique that is part of

almost any software development project.

Testing is mainly used to assess the

quality attributes and detect faults in a

software system and demonstrate that

the actual program behaviour will

conform to the expected behaviour. Many

studies show that testing may involve

50% to 60% of the effort involved in

building software applications and this

percentage may be significantly higher for

critical software systems 0. Testing

includes designing test cases, exercising

software with these test cases, and then

examining the results with the objective

of evaluating the quality attributes such

as correctness, robustness, and reliability.

2.4. The Semantic Web

The Semantic Web is an extension to the

Web that aims to give meaning to the data

and information on the Web to make

them machine-understandable and

automatically process-able 0.

XML is considered as a first step towards

the Semantic Web vision; however XML

provides no semantic (meaning) to the

data. Another important technology for

developing the Semantic Web is the

Resource Description Framework (RDF),

a XML-based data-model that allows the

description of meanings for concepts and

resources 0. A third technology was

introduces after XML and RDF which is a

collection of information called an

ontology. An ontology is an explicit and

formal specification of a

conceptualization, describing formally a

domain of discourse, and typically

consists of a finite list of terms and the

relationship between these terms 0. One

ontology language is OWL which is a rich

vocabulary description language for

describing properties and classes 0. Logic

is used as a formal language for

expressing knowledge in the ontologies

and to uncover ontological knowledge

that is implicitly given 0

Communications of the IBIMA 4

3. Web Services Quality Attributes

According to Garvin 0 quality can be

described from five different

perspectives. One of these is the user

view. A user sees quality as "fitness of

purpose", i.e., quality is defined as the

product characteristics that meet the user

needs or expectations whether explicit or

not. Although quality attributes may vary

between Web Services applications

according to the domain where the Web

Services are used, we analyze and focus

our work on the general abstract quality

attributes that affect most of the

requesters of Web Services, which are,

therefore, the quality attributes that

concern the user. A general quality model

was developed based mainly on ISO 9126

0, and other relevant quality attributes

from McCall 0 and Boehm 0 were also

added to the model when related to Web

Services (see Table 1).

When building the quality model, we

noticed that there is no agreement

between researchers about a fixed

general quality attributes because there is

no shared understanding about the

quality attributes (or characteristics). For

example, the terms accuracy and

correctness are used by different

researchers to mean the same quality

attribute. This issue happens with other

terms as well, such as compliance and

regulatory. We also noticed that some sub

attributes are related to different

attribute. For example: accuracy is related

to functionality attribute in ISO 9126,

while it is related to reliability attribute in

Boehm’s model; and although being

mainly related to security, access control

is related to integrity in McCall’s model,

and so on.

There are only a very few research

publications discussing about QoS for

Web Services. Among these, Looker et. al.

0 mention that the non-functional quality

Table 1. Quality model (attributes and sub-attributes that concern the requesters of Web
Services are in bold).

Attribute Sub-attributes

Functionality Suitability, Accuracy (or Correctness), Security ,

Interoperability, Compliance

Reliability Maturity, Fault Tolerance, Recoverability, Compliance,

Robustness, Availability, Integrity.

Efficiency Time Behavior (or Performance) (Latency and Throughput),

Resource Behavior, Compliance, Scalability. Accessibility

Maintainabili

ty

Analyzability, Changeability or Modifiability, Stability,

Testability, Compliance

Portability Adaptability, Install-ability, Co-existence, Replace-ability,

Compliance (or Regulatory)

Usability Understandability, Learn-ability, Operability,

Attractiveness, Compliance, Documentation.

5 Communications of the IBIMA

attributes for Web Services include:

availability, accessibility, integrity,

security, performance (latency and

response time), reliability, and regulatory.

They also provide the definition of those

quality attributes. Other important

quality attributes for Web Services

include accuracy, robustness, and

scalability. We define below the quality

attributes for Web Services that are

important for us and that were not

previously defined by Looker et al at 0:

• Accuracy: the quality aspect of

whether a Web Service returns the

right (correct or intended) response

to its requester. Accuracy is also

important for reliability.

• Robustness: the quality aspect of

whether a Web Service continues to

perform despite some violations of

the constraints in its specification.

• Scalability: the quality aspect of

whether a Web Service can handle

increasing the number of requesters.

• Replace-ability: the quality aspect of a

Web Service that relates to the

difficulty of using it on the place of

other software.

• Understandability: the quality aspect

of Web Services that relates the

requesters' effort to understand what

a Web Service can do or what is its

purpose.

• Learn-ability: the quality aspect that

relates to the requesters' effort for

learning Web Services application.

• Attractiveness: the quality aspect of

Web Services that relates to its

capability to be attractive to the

requester.

• Documentation: the quality attributes

of Web Services that relates to how

much information and description is

available with a Web Service.

The next section shows what quality

attributes can be assessed by applying

traditional and adapted testing

techniques, and also propose methods to

assess those quality attributes using

testing. And also next section will show

what quality attributes need other

techniques to be assessed or evaluated.

4. Assessing the Quality of Web

Services

QoS for Web Services is very important

since the QoS is considered one of the

main issues in Web Services applications

as many requesters now are reluctant to

use Web Services because of the

trustworthiness issues 0. Very little work

has been done to assess Web Services

quality through testing. Traditional

testing methods and tools are not

adequate because they do not address the

characteristics of Web Services and its

applications 0.

Testing Web Services is more difficult

than testing previous paradigms for

software application development

because Web Services' applications may

be composed dynamically from different

available Services that may be located in

different places and have different quality

attributes. Not only is the source code of

the Service unavailable, but the Service

might be hosted on servers at remote,

even competing organizations 0. In

addition, a Web Service may contain

unknown faults and, since any requester

can bind to a Web Service after being

deployed, it may experience intruding

attempts.

Testing Web Services can be viewed from

two perspectives: the Service provider

and the Service requester. One big

difference between the two perspectives

is the availability of the Service’s source

code. The Service provider has access to

the source code, whereas the requester

typically does not. The lack of source code

Communications of the IBIMA 6

for the requester of the Service limits the

testing techniques that can be performed.

According to Bloomberg 0, Web Services

testing tools employ the following range

of traditional software testing techniques:

black box or functional testing, white box

or structural testing, regression testing,

load testing, unit testing, and system

testing. Black box testing includes

boundary value testing, robustness

testing, special value testing, worst case

testing, equivalence class testing, and

random testing 0.

Bloomberg 0 lists a variety of desirable

capabilities for testing Web Services, such

as:

• Testing WSDL files and using them

for test plan generation: using the

information in WSDL files to generate

black box test plans.

• Web Service requester emulation:

emulating the requester of a Web

Service by sending test messages to

another Web Service and analyzing

the results.

Since we are mainly concerned with

quality as perceived by the requesters of

Web Services, this work focus on black

box testing, using WSDL to generate test

cases, and requester emulation.

Offutt et. al. 0 used data perturbation

which is considered a black box testing

technique to generate test cases for Web

Service. They stated that most of the

current testing tools for Web Services

focus on the testing SOAP messages,

testing WSDL files, and requester

provider emulation. Looker et. al. 0 used

fault injection to assess the dependability

of Web Services.

After analyzing how researchers tackled

Web Services testing, we noticed that they

focused mainly on testing the

composition of Web Services using

integration testing and in most cases their

work did not explicitly specify what

quality attributes are being assessed.

Examples include 000. Besides, some

quality attributes such as robustness and

accuracy have not been addressed by

researchers in this field.

Many quality attributes of Web Services

can be assessed by using requester

emulation and using WSDL to generate

test case together with adapted

traditional testing techniques (assuming

that the WSDL file for the Web Service is

available to the user).

Due to space limitation, this work focuses

on the following quality attributes:

• Accuracy or Correctness

Correctness of Web Services can be

assessed by using the information in

WSDL file to apply the black box

boundary value testing and random

testing and then requester emulation.

In more details:

� For each operation in WSDL build

the boundary value and random test

cases according to the data types of

the input parameters which also can

be obtained from the WSDL.

� For the Boundary value testing:

If the input parameter data type is

numeric (like int or float) then the test

cases for this parameter will be:

minimum value allowed for this

parameter (which can be obtained

from WSDL file by the minInclusive

7 Communications of the IBIMA

tag); minimum value + 1, nominal

value, maximum value allowed for this

parameter (which can be obtained

from WSDL file by the maxInclusive

tag); and maximum value – 1. If the

input parameter data type is String

then the test cases for this parameter

will be: Minimum length of this string,

only one character, nominal string,

maximum length allowed for the

string, maximum length – one

character.

� For the Random testing:

Choose a statistical distribution like

the normal or uniform distribution to

generate the test cases depending on

the data type of each parameter.

� For each test case from the

previous steps requester emulation is

applied by sending a SOAP message to

the Web Service under test and then

analyzing the response to compare it

with the expected return value of the

specific test case.

� Repeat the previous step until an

estimation of the accuracy of each

operation in WSDL has been reached.

• Robustness

Robustness of a Web Service can be

assessed by the same steps followed with

Accuracy, but changing the testing

techniques from boundary value testing

and random testing to robustness testing

(also called negative testing) where

maximum_value+1 and minimum_value-1

are also added to the test cases of

boundary value testing.

• Scalability

Scalability of a Web Service can be

assessed by requester emulation and load

testing, where a testing tool should

simulate many requesters trying to bind

to a Web Service under test at the same

time and then check if the Web Service

still performs as it is supposed to do.

• Availability

Availability can be assessed by constant

requester emulation and using WSDL,

where SOAP messages are regularly sent

to the Web Service under test to check if

this Web Service will send back a

response.

• Security

Verifying that a Web Service gives the

correct responses and that it is robust,

scalable, and available is important;

however we must also verify that this

Web Service is not vulnerable to attacks

by intruders. Security of Web Services has

many factors, one of them is access

control and can be assessed by applying

Penetration testing 0 (also called Bypass

testing) and then requester emulation.

For example, we can change the data type

of the input parameter (that obtained

from WSDL) or use a combination of

letters and numbers and any unexpected

inputs that are often used by intruders,

and then send (valid and invalid) SOAP

messages with those inputs to the Web

Service under test to check if the Web

Service is vulnerable to such attacks.

From the above analysis, we noticed that

many Web Services quality attribute can

be assessed by adaptation of traditional

testing techniques (to make them suitable

for the new characteristics of Web

Services). In addition, those traditional

testing techniques should be merged with

Communications of the IBIMA 8

requester emulation and using WSDL to

generate test cases in order to assess Web

Services quality. We also notice that there

is no shared understanding about some of

the testing terms used among

researchers, as Bypass testing and

Penetration testing are used to mean the

same testing technique. Another example

is Robustness testing and Negative

testing. This is one motivating factor for

the ontology proposed in next section.

The quality attributes of Web Services

that cannot be assessed using testing and

need other techniques include:

adaptability, replace-ability,

attractiveness, and regulatory.

5. The Proposed Ontology

The lack of semantics about the quality of

Web Services makes it difficult for a

Service requester to find the Web Service

that will accomplish the task he wants

with the expected quality. To solve this

problem, the operations of a Web Service

should be described in a way that lets the

requester understands the tasks this

Service can do, how to use them, and

what type of testing have been applied.

Quality attributes should also be

described and published with the Service

interface. One way to write this

description is by using an ontology

language.

This section combines the quality model

from section 3 and the set of testing

techniques that can be applied to Web

Services, as discussed in section 4, to

devise an ontology about the quality

attributes and the test cases for each of

the available Web Services (we are

assuming that we have a Web Service

pool of different domains). In other

words, our goal is to have an ontology

that represents a registry of a quality

enabled Web Services. This ontology is

not a replacement for the WSDL or UDDI,

but it provides the requesters of Web

Services with more semantics about the

quality attributes. The URL for this

ontology can be published inside the

WSDL file.

The ontology was built using the

following steps:

1. Create a class in the ontology that

represents the general description for

a Web Service called Web Services

Description (see step 1 in Figure 1.)

2. Add the following properties to

the class created in step 1: Web

Service Location, Web Service Owner,

Web Service Name, Web Service

Domain (e.g. financial, medical, etc.),

and Documentation Location which

represents a URL for a document

containing more details in a human

readable format about the specific

Web Service (see Figure 2.). Then

populate the individuals of this class

by the properties of the available

Web Services in the pool.

3. Map the taxonomy from section 3

to the ontology, by associating each

quality attribute that can be

evaluated using testing to a class of

this ontology. All the sub attributes

are then mapped to a sub class of the

corresponding attribute class and the

whole taxonomy will be in a class

called Quality Attribute Evaluate by

Testing (see step 3 in Figure 1.).

4. Add a property to the general

class about the quality attributes

from step 1 that represents the

weight, or estimate, obtained for each

quality attribute by running and

evaluating the test cases.

9 Communications of the IBIMA

5. Build another class for the test

cases that contain a sub class for the

relevant test cases to each of the sub

quality attributes in step 3 (see step 5

in Figure 1.)

6. Add the following properties to

the test cases class in step 5:

operation name, a property for each

of the input parameters, and the

expected output.

7. Populate the individuals of the

class in step 5 using the testing

techniques described in section 4 to

each of the quality attributes in this

class for each of the available Web

Services under test. Then, use the

results of the testing techniques

applied to obtain a weight or estimate

to the corresponding quality

attributes in step 3, according to the

number of test cases passed and

failed.

8. Add a class to the ontology that

represent a hierarchy of the quality

attributes that cannot be evaluated

by testing.

6. A Quality Enabled Web Service

The proposed ontology in section 5 can

describe the quality attributes and test

cases for a Web Service, and the Triangle

Web Service example will be used to

illustrate this ontology. The Triangle Web

Service consists of one operation that

accepts three integers as input and the

output is the type of the triangle

according to the three sides which

represents the 3 input values.

Figure 1. A fragment of the taxonomy of the classes of the proposed ontology

Communications of the IBIMA 10

Figure 2. Properties of the Web Services Description Class

The output is either: scalene, equilateral,

isosceles, or not a triangle 0. The Triangle

Web Service was implemented using Axis

1.2, which also enables obtaining WSDL

file automatically. To add a description of

this Web Service to the ontology, the

following steps were taken (See Figure

3.):

• An instance of the class Web Service

Description was created that is called

Triangle Type (see Step 1 in Figure 1.)

• The individuals for the instance in step

A were added where the web Service

Name was obtained from WSDL (see

Step 2 in Figure 2.)

• Two instances were added to the

Correctness Test Cases class which is a

subclass of Test Cases Class

Figure 3. Two instances for the Correctness_Test_Cases class and part of the

individuals for the Boundary_Value_Testing instance for the Triangle Web Service.

11 Communications of the IBIMA

(see Step 5 in Figure 1), the first instance

called Boundary_Value_Testing and the

second instance called Random_Testing

(see Instance Browser in Figure 3) the

purpose of these instances is to add the

test cases that will check the correctness

of the operation in the Triangle web

Service.

• The individuals of the instances

in step C (Boundary_Value_Testing and

Random_Testing) were populated using

the techniques for testing the

Correctness quality attributes described

in Section 4. Applying the testing

techniques for the Boundary Value

Testing on the Triangle Web Service, we

obtained a set of test cases that

contained, among others, the following

test cases:

Input: (0,0,0) Exp Output: “Not a

Triangle”

Input: (100,100,1) Exp Output:

“Isosceles” (see Individual Editor in

Figure 2)

Input: (100,1,100) Exp Output:

“Isosceles”

Input: (100,99,2) Exp Output:

“Scalene”

Input: (99,100,101) Exp Output: “Scalene”

Input: (99,99,99) Exp Output:

“Equilateral”

For the Random Testing technique, we

obtained a much larger set of test cases

containing, for example, test cases such

as:

Input: (70,42,70) Exp Output:

“Isosceles”

Input: (64,2,21) Exp Output: “Scalene”

Input: (20,1,2) Exp Output: “Not a

Triangle”

Input: (36,42,53) Exp Output:

“Scalene”

• An instance of the Correctness class

which is a sub class of Functionality

was then created for the Triangle Web

Service (see Step 3 in Figure 1.)

• The Requester emulation testing was

then used repeatedly to test the

Triangle Web Service by sending SOAP

messages to this Web Service using the

test cases that were obtained in step D

reporting the success/failure rate

(weight) of the Correctness quality

attribute.

• The weight that was obtained in step F

was populated to the weight property

of the instance of Correctness created

in Step E.

• The same steps from C to G can be

done to other quality attributes in

Quality Attributes Evaluated by

Testing class such as robustness.

Building the ontology instance for the

Triangle Web Service, it is possible to

associate how the results from executing

the test cases can measure and be used to

assess the quality attributes of the Web

Service.

7. Conclusions and Future Work

Web Services are considered an

application integration technology on the

Internet that will shift the way that

distributed systems are built. Being an

implementation of Service Oriented

Architectures, Web Services have many

characteristics different from the

previous technologies for building

applications. Some of the most important

characteristics are loose coupling and

dynamic discovery and invocation of

heterogeneous services.

One problem that Web Service

applications still face is that current

standards do not support the description

of the quality attributes of Web Services.

This paper addressed this issue by

proposing an ontology for describing

quality attributes that concerns the

requesters of Web Services.

Communications of the IBIMA 12

The benefits of this ontology include:

• A solution toward reaching the

required quality in Web Services to

achieve the desired level of

trustworthiness by requesters.

• Both providers and requesters can

add test cases to the proposed

ontology and the increase in test

cases means obtaining a better

evaluation or weight for the specific

quality attribute.

• Taxonomy of the quality attributes

for Web Services and how they are

related to each other and to the

traditional testing techniques, and

also to new Web Services testing

techniques.

• The provision of a shared

understanding for quality attributes

of Web Services among providers and

requesters, which will reduce the

semantic gap and verify the

conformance of Web Services with

requester requirements.

• The provision of a shared

understanding about the testing

techniques of Web Services.

• An ontology that describes both the

quality attributes that can be

evaluated using testing and also other

attributes that cannot, such as

understandability and attractiveness.

• Help for the requester to find the

Service that best fits his or her

requirements among many

competing Services.

• Help for the requester to search for

Web Services in some domain only or

that satisfies certain criteria of the

quality attributes or functions.

• The ontology will help in automating

the process of testing Web Services

based on its description.

The proposed ontology describes the

quality attributes that can be evaluated by

testing techniques. We described how to

evaluate some of the quality attributes in

this paper, while others will be discussed

in future work. Also future work will

solve the problem of automatically testing

and describing Web Services quality

attributes.

We are currently investigating ways to

evaluate the other quality attributes that

can not be evaluated with testing. We also

plan to use reasoning to infer about the

quality attributes of Web Services using

the test results. Also we plan to extend

this work by describing also the

composition of Web Service in an

ontology and how the quality attributes of

one Web Service will affect the

composition overall quality attributes.

References

Antoniou, G. and van Harmelen, F. (2004),

"A Semantic Web Primer," The MIT Press,

Massachusetts Institute of Technology,

USA.

Arkin , B., Stender, S., Cigital, G. (2005),

“Software Penetration Testing,” Published

by the IEEE Computer Society, IEEE

Security and Privacy, 532-535.

Berners-Lee, T., Handler, J., and Lassila, O.

(2001), "The Semantic Web". Scientific

American 284, 34-43.

Bloomberg, J. (2002) “Testing Web

Services Today and Tomorrow”, Rational

Edge E-zine for the Rational Community

[Online] [Retrieved January 29th, 2007],

http://www.ibm.com/developerworks/r

ational/library/content/RationalEdge/oc

t02/WebTesting_TheRationalEdge_Oct02.

pdf.

Boehm, B. W., Brown, J. R., and Lipow, M.

(1976), "Quantative Evaluation of

Software Quality," Proceedings of the 2nd

International Conference on Software

Engineering (ICSE), California, USA, 592-

605.

13 Communications of the IBIMA

Canfora, G. (2005), “User-side Testing of

Web Services,” Proceedings of the IEEE

Ninth European Conference on Software

Maintenance and Reengineering

(CSMR’05), Manchester, UK, 301-301.

Garvin, D. (1984), "What does 'Product

Quality' Really Mean?" Sloan Management

Review, USA, fall. 25-45.

ISO 9126-1: 2001 Software Engineering –

Product quality – Part 1: Quality Model,

International Organization of

Standardization, Geneva, Switzerland.

Jargensen, P. (2002), “Software Testing, A

Craftsman’s Approach,” Second Edition,

CRC Press, USA, 2002.

Looker, N., and Xu, J. (2003), "Assessing

the Dependability of SOAP-RPC-Based

Web Services by Fault Injection", 9th IEEE

International Workshop on Object-

oriented Real-time Dependable Systems

(WORDS'03), Mexico, 163-170.

Looker, N., Munro, M., and Xu, J. (2004),

"Assessing Web Services Quality of

Service with Fault Injection," Presented at

Workshop on Quality of Service for

Application Servers, Symposium on

Reliable Distributed Systems, SRDS, 2004,

Brazil.

McCall, J. A., Richards, P. K., and Walters,

G. F. (1977), "Factors in Software Quality,"

vol. 1, 2, and 3, AD/A-049-014/015/055,

Nat'l Tech. Information Service,

Springfield, Va.

Milanovic, N. (2005), “Contract-based

Web Services Composition Framework

with Correctness Guarantees”, In

proceedings of the 2nd International

Service Availability Symposium (ISAS

2005), Berlin. 52-67.

Offutt, J., Xu, W. (2004) "Generating Test

Cases for Web Services Using Data

perturbation", ACM SIGSOFT, Software

Eng. Notes, 29(5), 1-10.

Osterweil, L. (1996), “Strategic Directions

in Software Quality,” ACM Computing

Surveys, 4(4), 738-750.

Singh, M. P. And Huhns M. N. (2005),

"Service-Oriented Computing," John Wiley

& Sons Ltd, England.

Tsai, W., Chen, Y., Paul, R. (2005),

"Specification-Based Verification and

Validation of Web Services and Service-

Oriented Operating Systems," 10th IEEE

International Workshop on Object-

Oriented Real-Time Dependable Systems

(WORDS05), Sedona, 139-147.

