
IBIMA Publishing

Communications of the IBIMA

http://www.ibimapublishing.com/journals/CIBIMA/cibima.html

Vol. 2011 (2011), Article ID 160480, 22 pages

DOI: 10.5171/2011.160480

Copyright © 2011 Aminat Showole, Shamsul Sahibuddin and Suhaimi Ibrahim. This is an open access article

distributed under the Creative Commons Attribution License unported 3.0, which permits unrestricted use,

distribution, and reproduction in any medium, provided that original work is properly cited. Contact author:

Aminat Showole e-maill: aminatshowole@yahoo.com

Layered Approach to Open Source

Software Development Success

Aminat Showole, Shamsul Sahibuddin and Suhaimi Ibrahim

UTM Advanced Informatics School, Universiti Teknologi Malaysia (UTM), KL, Malaysia

Abstract

Open source has emerged as a widely accepted software development phenomenon which has

tremendously brought about a significant paradigm shift from traditional software development

methodologies such as top down design and stepwise refinement to an unconventional software

development approach by means of collaborative software development method among a wide

geographically dispersed interested developers and committed project participants while paying

less attention to immediate “physical gains”. The open source approach focuses on highly diverse

views of developer motivations; ranging from ego gratification, ideological satisfaction and gift

culture for individual developers and open source motivations may be viewed from spreading the

software development risks and associated maintenance costs at corporate organisational level. In

this article, a five layered open onion model of open source was broadly examined. Analysis and

evaluation were narrowed down to only the initiation layer of the open onion model. Results show

that open source success largely depends on the quality associated with successful initiation of the

project. Our findings also reveal that the most popular open source license is GPL and that license

type has significant impact on project rank. The domain audience has negative impact on project

rank and user interface has significantly negative impact on project’s domain audience. Open source

project topics covered have a significant impact on the domain audience and a negative effect on the

user interface. This research has also presented a conceptual framework of open source success tree.

Keywords Software Engineering, Open Onions, Open Source.

Introduction

Software Industry has accepted the fact that

changing requirements are simply part of the

software development processes. Today,

software developments are faced with

steadily increasing expectations: software

has to be developed faster, cheaper and

better. Although user requirements do

change middle way at the same time,

application complexity increases. Meeting all

these demands requires an ability to

continuously revamp past codes in order to

evolve high quality software.

It could be deduced from (Charles 1992) that

quality software is not achievable within

reasonable costs and budget time except if it

is able to reuse past “reusables”. A software

artifact that is used in more than one context

(projects) with or without modification is

considered reusable.

However, in order to revamp an existing

software code, it will be required to have full

access to the source codes. This way, a

software developer could have new

functional software evolving quicker,

cheaper and with high quality.

Communications of the IBIMA 2

Various software paradigms have tried to

address the issue of evolving quality software

faster within reasonable budget. These

include but not limited to object orientation

and component technology. Open source

seems to be the only software development

paradigm that allows for free accessibility to

the source code for re-modifications and

critical study in order to utilize relevant

codes and remove irrelevant.

Generally, software reuse is enabled through

modular software architectures and the

development of generic software

components. However, the design of generic

components requires substantial investment

for a firm that can only pay off in the long run

if and when the firm saves development costs

through component reuse in software

projects. In the software industry, firms that

reuse code on more than one project can

amortize development costs faster and

reduce development time in new projects;

(Barnes, Durek et al. 1988), (Barns and

Bollinger 1991) and (Banker and Kauffman

1992). Reusing code and components from

software libraries also enhances the quality

of new software products by allowing for

fully tested and debugged software (Knight

and Dunn 1998).

In spite of the reported benefits, several

studies on software development firms have

found that code reuse in software

development is problematic and that the

success of corporate reuse programs hinges

on organizational factors more than on

technical factors. In software development

firms, corporate reuse programs need to

commit an initial investment to (Isoda 1995).

On the demand side, it is not surprising to

note that many firms and governments have

adopted open-source software, since this

enables them to reduce costs. However,

economists have found it difficult to

understand the supply side of open-source

innovation, in particular, labour supply

(Siegel and Wright 2007). Other suggested

possibilities of government adoption of open

source in education policy have also been

discussed in (Showole, Suhaimi et al. 2008)

Open-source software offers the most

astounding range of reusable assets for any

software project. Open-source software is

available for virtually all activities, runs on

every platform, and can be used in almost

every business domain for which software is

written (Brown and Booch 2002).

Quite a number of researches have described

open source quality in different ways.

(Aberdour 2007) described open source

quality with respect to onion-like

arrangements of the open source developers

and contributors. Four layers of the onions

were presented which are Core team,

contributing developers, bug reporters and

users. However, the in-depth analysis of the

quality related components parts for each of

the layers were not presented.

The measurement of project success itself is

however elusive. In (Otte, Moreton et al.

2008), it was assumed that projects which

were considered successful are those with

productive release version, more than two

years in the market, whose developer teams

consisted of more than five developers and

which have a community above fifty

participants. Otte however, concluded that

the assumption does not reflect the actual

project success.

Understanding the structure of software

systems can provide useful insights into

software engineering efforts and can

potentially help the development of complex

system models applicable to other domains.

(Zheng, Zeng et al. 2008) took a study on

open source package and inter-package

dependencies as a way of understanding the

software structures using dependency

graphs in the analysis.

This study suggests that in order to

understand the structure of software system,

it would be required to understudy and

analyse processes surrounding the actual

development. Open onions is a framework

which can be used to improve the

understanding of open source project

initiation success.

3 Communications of the IBIMA

Open source successes have been largely

attributed to the surrounding “people” in

connection with the open source

development. In (Mockus, Fielding et al.

2002), it was hypothesized that ”In

successful open source developments, a

group larger by an order of magnitude than

the core will repair defects, and a yet larger

group (by another order of magnitude) will

report problems”. It was however reported

by Audris in subsequently that in the Apache

study, the group that adds new functionality

is larger than it was expected.

Various onion models have been

implemented in many aspects of software

and network security (Goldschlag, Reed et al.

1999), (Paul, David et al. 1997), (Yoshifumi

and Tatsuaki 2008), (Joan, Aaron et al. 2007),

(Malik Ahmad Yar and Darryl 2008). A few

research on onion methodology have been

presented in the field of open source, mostly

in the representation of the arrangements of

team structure (de Sousa, Balieiro et al.

2009), (Crowston and Howison 2006) and

(Crowston, Annabi et al. 2004). However, the

onion-like arrangements of the open source

community are yet to be duly explored in

terms of setting-up the onion-framework

that could form a yardstick for determining

the incumbent characteristics that could

determine the success or failure of “any”

open source development.

The open onions technique, as briefly

introduced in (Showole, Suhaimi et al. 2008)

is an approach with five layers of the open

onions which tends to improve on the

existing onion models of open source. The

remainder of this article is organized as

follows. The main purpose of this article is

presented in the next section. Section 3 is

focused on preliminary studies. In section 4,

the Open Onions approach is presented while

section 5 detailed the experimentation.

Results summary is presented in section 6.

The concluding part is section 7 and the last

part, section 8, points at future directions of

this research.

Purpose of the Paper

This paper is an extension of our earlier work

on open onions model as presented in

(Showole, Suhaimi et al. 2008). In this

approach, open source project developments

have been broken down into five layers of

open - onion, which were identified to be the

critical factors affecting the development

success of long-term sustainability of open

source development projects. Table 1 is the

open onions descriptive table that shows all

the five layers of the model.

It was however discovered that the way an

open source project is started has a far-

reaching implication on the resulting

success/failure of such a project. Ten highly

ranked (based on Sourceforge.net ranking of

March/April 2009) open source projects

were investigated. Data was collected from

sourceforge.net repository and analysed with

SPSS. Although our approach is based on five

fundamental open onions layer, this paper

addresses the first layer of the open onions –

the project initiation layer.

The initiation layer identifies the success

factors in order to achieve a quality open

source development project. This means that

the initiation strategy goes a long way in

affecting the quality of such a project. The

first layer of the open-onions, i.e. the project

initiation layer is modelled extensively. Table

1 is the open onions description table. It

shows all the five open onions layers with

their description.

Communications of the IBIMA 4

Table 1: Open Onions Description

labels Description

A Project Initiation Layer

b The Maintenance Layer

C Developers/ Users Layer

d Observers/Non-Interest Group

Layer

E External Layer

Preliminary Studies

The quest for providing technologies for

building software systems faster, with lower

cost and higher quality has led to the

advances in software technologies such as

component based system development,

Object Orientation, Service Oriented

architecture, software reuse and open

source. One of the most important benefits

that reuse or revamp delivers is quality.

Among all powerful software technologies

available today, software reuse is a

fundamental approach to accelerate the

production of high quality software and this

is achievable by its ability to provide the

benefit of faster, better and cheaper software

development processes. Reuse standards are

emphasized in (McClure 2001).

 As could be observed, most of the earlier

software development technologies have

some shortcomings which could be

addressed by open source. With object

orientation, there is a need for

compositionality. That is, OO languages do

not support the specification of an explicit

typed “Inheritance Interface” for

programmers who develop subclasses

(Meijler and Nierstrasz 1995). Often, object

oriented problems are complete

specifications of objects, attributes,

structures services and subjects and the

degree to which members within a class are

related to one another is often difficult to

identify.

Another short coming of object orientation is

that system modification, maintenance and

testing can be difficult because of inheritance

and behavior overriding. Replacement of

object with a new object that implements

changes to the business may impact all other

objects that have inherited properties of the

replaced object and this may lead to

excessive testing of the whole system

(Kiczales, Lamping et al. 1997).

However, Component Technology also

exhibits certain setbacks in the area of

determining the level of cohesion and

coupling of components. It is also difficult for

developers to adapt a component to a new

platform if it were not developed for that

platform (Rizwan Jameel Qureshi and

Hussain 2008). Other difficulties associated

with this technology are the architectural

mismatch or architectural complexity which

results in some other component

disadvantages. For example, customization

and integration of already developed

software components according to the

requirement of the new application is a

major issue in component technology.

Open source is an alternative paradigm,

which encourages open access to source

codes for further reuse and modifications.

Volunteers who are geographically dispersed

usually produce software developed under

this approach. Open source has become a

subject of focus lately in the software

engineering world. It is a collaborative

development paradigm characterized by

various volunteer whose developers and

users broadly geographically dispersed.

It is important however to note that not in all

cases that open source developers work for

free. Substantial evidence shows that most

5 Communications of the IBIMA

developers are volunteers except for some

corporate organisations who belief in open

source economic model; they go as far as

employing paid staff to work on open source

projects for such organisations.

Numerous perceived disadvantages of open

source model have been identified. Of

particular reference is the QinetiQ report

where (Peeling and Satchell 2001) discussed

that Open Source developers tend to be very

passionate about technical issues (in terms of

coding).

The study of (Feitelson, Heller et al. 2006)

was focused on considering open source

quality from the number of downloads

criteria only. To this end, we revealed that

success of open source development projects

goes beyond the technical issues (in terms of

coding) alone. Open source development

projects also transcend the number of

downloads alone as a yardstick for

measuring the success of such projects

especially at early stages of the project

developments.

Nature of the Problem

Open source is obviously a subject for

projects in Universities and research

institutes. There is a growing interest among

Governments in using open source as a

mechanism for exploiting research results.

The research community gives open source

developers free access to a large community

of the brightest and freshest minds (Peeling

and Satchell 2001). Human engineering

artistry creates computer, computation and

information systems that enhance everyone’s

daily lives. The complexity associated with

these systems (PC’s, Laptops, palm tops, 3D

Animation, avatars, the web technology itself,

DNA computing, etc) conveys affluence of

computing functionality.

The complexities however, also make it

difficult to predict even the original system

behaviour, let alone anticipating the

emergent behaviour of multiple interacting

systems. This could then be imagined in the

case of open source development where

there is no one correct way to run an open-

source project in which there are thousands

of developers submitting thousands of

patches to a single software development

project.

Successful open-source projects can be quite

different from each other. Some, such as

Apache, are very democratic and volunteers

are welcome to participate in all activities.

Others, such as MySQL, where almost all of

the developers work for one company,

primarily do their development internally

and then release the results; users and

developers engage with each other to report

bugs, request new features, and generally

discuss the software, but development

happens less visibly. There are even some

projects that do not have a community at all,

but consist of just a web page where new

versions are made available for people to

download and perhaps an email address

where comments can be sent (Goldman and .

2005). This makes it clear why traditional

software engineering models are not suitable

for open source development. In traditional

software engineering model, due to budget

overrun and late delivery, many projects are

forced to be aborted or are missing

implementation of some components or are

delivered without thorough debugging.

Related Work on Open Source Research

Numerous issues could be identified within

the context of the open source development

model. Some of which are the Profitability,

Security, collaborative, testing,

interoperability, legal issues and acceptable

software engineering approach for open

source development. For the purpose of

defining the research boundary, we would be

focusing on identification of suitable

software process model to support open

source development.

Notable academic research activities have

been conducted in the field of open source. It

was observed from (Madey, Gao et al. 2003),

(Gao and Madey 2007), (Xu, Gao et al. 2005;

Communications of the IBIMA 6

Jin Xu and Madey 2006), (Oostendorp 2009),

(Rajdeep, Gary et al. 2006) and (Zheng, Zeng

et al. 2008) that most of the research

activities are based on the social network

analysis of open source development.

(Feitelson, Heller et al. 2006) conducted their

research based on the distribution

downloads as a yardstick for a successful

open source project. (Timo and Virpi 2005)

focused on the maintenance process of open

source as a way of mapping the maintenance

activities of the chosen open source case

studies to the existing ISO/IEC maintenance

standards. (Scotto, Sillitti et al. 2007)

conducted his research on mining the open

source repository. In (Zhao and Elbaum

2003), surveys on open source quality

assurance activities were mainly based on

testing phases of the software development

where it was reported that there is a need for

more research on identifying the most

efficient procedure to deploy and carry out

quality assurance activities in open source.

According to (Peeling and Satchell 2001),

most investors do not fully understand the

open source model. The commercial models

have well- defined profit motive, yet they are

still developing and consequently

unpredictable. Most of the problem with

some software that fail the market

acceptability is that the development could

not have been funded continuously unlike

few proprietary software merchants e.g.

Microsoft Incorporation which can

continuously fund its products.

Open source however solves this problem by

having a zero cost, base meaning that License

fees are usually at zero cost except for

maintenance and other profit models

surrounding open source, so running out of

capital is not a problem as long as the group

of developers maintains their interest; the

project can keep on functioning. Also, the

ability for users to acquire complete software

without having to sign licenses and make

financial case to their management; aids

initial take off.

The open source is thus an effective practice

which had evolved as a set of customs,

transmitted by imitation and example,

without the theory or language to explain

why the practice worked. Raymond (Steven

1999) revealed that lacking open source

theory and language hampered the open

source community in two ways explaining

that it would be difficult to think

systematically to improve the development

method and it would be very difficult to

explain or show the method to anyone else.

Most times, open source development is

usually described based on case studies; for

example in (Mockus, Fielding et al. 2002).

However, (Aberdour 2007) shows that it is

still very difficult to understand why

successful open source projects attain high

quality. This research explains why and

points at the processes involved in the initial

take-off of a quality open source project.

Literature on Related Onions Models

The Open onions approach is based on onion

model as could be observed from the model

name. This article will not be complete

without a review of previous onions models.

This research has therefore investigated the

use of onion models in varying contexts. It

was discovered that the use of onion model

transcends only the field of software

engineering. In the field of chemical

engineering, for instance, in (Dominic Chwan

yee Foo 2005), onion model was used to

simulate chemical process synthesis, where it

was stressed that onion model is an

alternative way of presenting the hierarchical

approach of chemical process design.

There are also repeated uses of onion models

in the information security field where each

onion layer is said to be a security enforced

layer and it makes organizational network

security much tighter than the traditional

lollipop model which is based solely on

building a single wall around an object of

value. This implies, according to (Rhodes-

Ousley., Roberta. et al. November 10, 2003),

7 Communications of the IBIMA

once the lollipop security firewall is attacked,

the organizational valuables inside are

completely exposed. This is because the

lollipop premier security model does not

provide different levels of security.

In other security related instances, onions

routing has been identified as an effective

approach of solving security problems over a

simple application of cryptography within a

packet-switched network (Paul, David et al.

1997; Goldschlag, Reed et al. 1999). Various

researches on onion models have also been

conducted especially in the field of computer

communications networks. A number of

researchers have therefore adopted the use

of onions models in addressing core security

issues in computer networks (Benjamin,

Oliver et al. 2009), Malik (Malik Ahmad Yar

and Darryl 2008). Adoption of onion model

in implementing black-box model (Joan,

Aaron et al. 2007), addressing issues relating

to malicious return path in a communications

network (Yoshifumi and Tatsuaki 2008) and

onions methodology adoption to specify and

implement abstract data types (ADT) in a

data dominant system (Arun and Paul 1994).

The open onions approach is a unique

approach to achieving open source quality

control by having a layered methodology of

open source project development (Showole,

Suhaimi et al. 2008).

The Open Onions Approach

Quality views are very diverse ranging from

transcendent view, to product view, user

view, manufacturing view and value-based

view (Koch and Neumann 2008). Product

metrics however, describes the developers

Open onions as represented in Figure 1 as a

layered approach to open source

development. This approach strives to

address open source quality from two

perspectives, the transcendent view and the

product point of view. This is achieved

through the use of statistical method of

quantifying software development.

(Pressman and Scott 2005) and (Roger S.

2001) have presented valuable benefits of

using statistical approach in software quality

managements.

It is note-worthy that organisations wanting

to invest in open source would want to know

the estimated amount of resource they must

invest in order to achieve the necessary

deliverables (Jai 2005) and this research

points at the estimated amount of resources

(in terms of domain audience, expected user

interfaces, required topics to be covered and

the suitable open source license type)

necessary for a quality open source.

It is a portable approach which doesn’t

depend on any software architectural

complexity. It scales well in the area of

platform and programming language

independence because it does not focus on

the internal code representation of the

software development. Figure 1, with the

summary presented on table 1, depicts that

Layer ‘a’ represents the open source project

initiation layer which is the main focus of this

article.

Layer ‘b’ is the project maintenance layer

which encompasses the core initiators and

other technical personnel responsible for

acceptance/rejection of submitted patches

into the main stream of the core of the

project developments including other

technical personnel responsible for

acceptance/rejection of submitted patches

into the main stream of the core of the

project developments.

Layer ‘c’ represents the developers which are

also part of the group of end users, where-in

all project contributors fall with this group;

including the users/core developers. Layer

‘d’ is the observer layer for those who are not

necessarily interested in contributing codes

but would like to follow most of the open

source development in order to be well

informed and updated. They may also wish to

play around with the codes in order to learn

from its internal workings.

The last layer ‘e’ represents the external

layer. At this layer, we consider various

Communications of the IBIMA 8

organisations that actually get hold of the

raw codes of open source projects and adapt

it to suite their organisational needs whereby

evolving new high quality software cheaper

and faster. Such organisations may not

necessarily release the new resulting

software ‘open’. The new package therefore

becomes a guided asset of such organisation.

Table 2 gives the full description of the open

onions detailed approach, Table 2 gives the

details of the open onions.

 Figure 1: Open Onions Layers

a

b

e

d

c

9 Communications of the IBIMA

Table 2: Open Onions Details

Layer Description Details

A Open source

project

initiation layer

This is the open source project initiation phase. The open source project

initiator(s) is (are) the person(s) who started the project and eventually

are usually referred to as the project leaders among the increased

number of core maintenance group.

B Project

maintenance

layer

project maintenance layer which encompasses the core initiators and

other technical personnel’ responsible for acceptance/rejection of

submitted patches into the main stream of the core of the project

developments

c Developers This represents the developer’s layer. The members of this group are

users with varying degree of authority in the whole project. They also

include the group of end users.

d Observer layer Observer layer for those who are not necessarily interested in

contributing codes but would like to follow most of the open source

development in order to be well informed and updated. They may also

wish to play around with the codes in order to learn from its internal

workings.

E External layer Various organisations that actually get hold of the raw codes of open

source projects and adapt it to suite their organisational needs whereby

evolving new high quality software cheaper and faster. Such

organisations may not necessarily release the new resulting software

‘open’. The new package therefore becomes a guided asset of such

organisation

Empirical studies from literature

(DeKoenigsberg 2008), (Fielding 2005),

(Devanbu 2008), (Lakhani and Eric 2003),

(Aberdour 2007) and (Crowston and

Howison 2003) have shown that the

successes of open source development

projects largely depend on some success

factors such as developer skill, programming

language support, domain audience

addressed, natural language support, to

mention but a few. We have packaged all

these factors together to form the open

source success tree in figure 2.

This research has modeled with fish bone,

substantial aspects of the success criteria

necessary for starting off an open source

development project. “Open source success

tree” in Figure 2 points at various factors to

be considered while an open source project

is initially set up and gradually finds its feet

in the high-ranking open source project

domains.

First, which is the most important, is to learn

from others. This further implies that the

community of open source around a given

project can only be built and sustained by

constantly meeting and communicating with

other project leaders. It involves the project

leader(s) joining and contributing to at least

one on-going open source project, and to

search for similar project.

The second factor is to develop leadership

and communication skills. Here, it is expected

that project developer defines project goals

and vision, decision making roles, develops

project rules and sets up leader activities.

Communications of the IBIMA 10

Figure2: Open Source Success Tree

Thirdly is the need to build support for the

project. At this stage, the project leaders

‘find’ people who share same vision and

goals, allow every project participant to

assume a ‘sales man role’, quest for sponsor

and donations fall within this level;

community building by either word of mouth

or postings on the discussion boards are

crucial at this stage.

Lastly is to avoid fatal errors. This implies

that the core project developers must avoid

an unclear goals and objectives of the project.

It is always required to have previous

management skill before embarking on large-

scale open source development involving

numerous developers to be managed across

the project life cycle. It would be a fatal error

to underestimate people that are project

members. Failure to build a community

around an open source project would make

such project unpopular which has resulted in

negative effect on the project ranking as

discussed in section 3 of this article. To yield

a required level of project success, it is not

recommended to focus solely on code

development without considering basically

all aspects of the successful take-off of such

an open source project. In Figure 2, the open

source success tree shows the required

necessary aspects of building a strong

community around an open source

development project.

Experimentation

The open-onions project initiation layer was

modeled statistically with SPSS tool. Open-

11 Communications of the IBIMA

onion success tree in Figure 2 was used in

depicting all component parts of the layered

model.

Various aspects of the critical factors were

tracked by this model using case studies of ten

highly ranked open source projects. Data for

the ten open source projects was obtained

from sourceforge.net data repository. These

case studies were selected from the

sourceforge.net software map, under the

software development sub-categorization.

This is because our research is focused on

open source development projects.

Sourceforge.net, the largest open source

repository, was queried to extract relevant

development details on each of the case

studies.

Initial Problem Formulation and

Conceptualization

The identified critical issues under study

were: user interface, license type, topics

covered and domain audience for each of the

ten case studies. The result was analysed and

presented using SPSS statistical analysis tools.

In table 3, the necessary parameters that

could affect the success and quality of open

source project initiation were considered. It

was achieved by identifying the first layer of

our open – onions model. This first layer, open

source project initiation layer, was

characterised by various incumbent

properties identified from our literature

review and case studies.

The ‘domain audience’ describes types of

target audience for each of the open source

projects; for example, manufacturing and IT.

‘User interface’ represents the type of user

interfaces being supported e.g. web based

and xwindow system; topics covered are the

relevant topics being covered by the project

e.g. accounting, point of sale and project

management, and the License type indicates

the type of license(s) binding on the use and

adoption of the project e.g. GPL and BSD

Table 3: Project Initiation Parameters

Projects(rank) domain (Audience) user interface topics covered Licence types

1 6 1 6 2

2 3 1 3 1

3 6 1 3 1

4 2 2 2 1

5 1 5 2 1

6 2 2 2 1

7 2 4 2 3

8 3 2 5 4

9 3 1 3 1

10 3 3 2 5

Project Rank

The project rank is comprised of ordinal data

set. The rank order is as obtained from

sourceforge.net and it is calculated based on

project traffic, development, and

communication variables.

Communications of the IBIMA 12

Figure 3: Project Rank

Traffic = [(log(last_7_days_downloads + 1) / log(highest_7_day_downloads + 1))

 + (log(last_7_day_logo_hits + 1) / log(highest_7_day_logo_hits + 1))

 + (log(last_7_day_site_hits + 1) / log(highest_7_day_site_hits + 1))

] / 3

 =

 [(log(2,254 + 1) / log(2,191,506 + 1))

 + (log(22,966 + 1) / log(3,813,755 + 1))

 + (log(259,460 + 1) / log(1,350,986 + 1))

=] / 3

 0.69152880089125

Development =

 [(log(last_7_days_scm_commits + 1) / log(highest_7_day_commits + 1))

 + (100-days_since_last_Sile_release / 100)

 + (100-days_since_last_admin_login / 100)

] / 3

=

 [(log(56 + 1) / log(+ 1))

 + ((100 - min(100, 38)) / 100)

 + ((100 - min(100, 0)) / 100)

=] / 3

Communication =

0.68048794943448

 [(log(last_7_days_tracker_entries + 1) / log(highest_7_day_entries + 1))

 + (log(last_7_days_ML_posts + 1) / log(highest_7_day_ml_posts + 1))

 + (log(last_7_days_forum_posts + 1) / log(highest_7_day_forum_posts + 1))

] / 3

 [(log(33 +1) / log(481 + 1))

 + (log(0 + 1) / log(1 + 1))

= + (log(232 + 1) / log(690 + 1))

] / 3

 = 0.46817588056105

Total Score = (TrafSic + Development + Communication) * 20,000,000

 = 36,803,853

Domain Audience

The details in Table 4 are the expanded view

of the domain audience. The case studies

have shown that at least 3 popular domain

applications would be required for successful

open source development project. From this

study, it was discovered that Developers,

Information Technology and End-

user/Desktop Application domains are the

most relevant.

13 Communications of the IBIMA

Table 4: Domain Audience Analysis across the Case Studies

Domain

Name

Domain

Frequency

Developer 9

IT 4

End User/Desktop 4

System Administrators 2

Quality Engineers 2

Manufacturing 2

Finance/Insurance 2

Customer Service 2

Education 1

Non-Government

Organization (NGO) 1

Others- Not Specified 2

Total 31

It is therefore evident that the open source

audience is mostly software developers’

experts as could be deduced from Table 4

above, nine out of the ten case studies have

software developers as their main audience.

This therefore influences the type of domain

audience that needs to be targeted by any

successful open source project since quality

software could be attributed to end-user

satisfaction. Literature studies have shown

that overall quality of a software product has

a direct relationship to the user satisfaction.

(Glass 1998) has developed an intuitive

relationship between the user and the

different quality attributes which says:

User satisfaction = compliant product + good

quality + delivery within budget and schedule

High quality software according to

(Wolfgang, Stefan et al. 2005) is typically

defined by quality attributes like customer

satisfaction, which is mainly determined by

projects being on budget and time which is

key priority over other factors.

In this paper, statistical software quality

assurance technique Pressman (Roger S.

2001) analysis has been adopted in order to

categorize and identify quantitative open

source software development quality

attributes.

Open Source Licence Type

Table 5 shows the frequency analysis of open

source licenses.

Communications of the IBIMA 14

Table 5 : Frequency Table for License Types

License Types Frequency

Valid GNU Public License (GPL) 6

Mozilla Public License 1

Lesser GNU Public

License(LGPL)
1

Barkely (BSD) 1

Eclipse Public License 1

Total 10

The result from Tables 2 and Table 5 above

shows that the most important License for a

highly rated open source development

projects is GPL License. All other licenses are

of relatively lower priority as evident from the

two tables. Although, all the licenses adopted

by the ten projects fall within the category of

Licenses that are popular and widely used or

with strong communities, GPL is most

prominent as observed on Table 5.

GNU Public License (GPL) is a free software

license written by Richard Stallman in the

mid-80s. This license pioneered a concept

known as copyleft. The GNU General Public

License (GPL) is a widely used free software

license, originally written by Richard Stallman

for the GNU project. The GPL is the most

popular and well-known example of the type

of strong copyleft license that requires

derived works to be available under the same

copyleft. In ensuing copyleft provisions, this

means that when modified versions of free

software are distributed, they must be

distributed under the same terms as the

original software. Thus, all enhancements and

additions to copylefted software must also be

distributed as free software. This is sometimes

referred to as "share and share alike".

This requires that developers who use GPL

code in their product must make the source

code available to anyone, including when

they share or sell the object code. In this case,

the source code must also contain any

changes the developers may have made.

However, if GPL code is used but not shared

or sold, the code is not required to be made

available and any changes may remain

private. This permits developers and

organizations to use and modify GPL code for

private purposes without being required to

make their changes available to the public.

Supporters of GPL claim that by mandating

that derivative works remain free, it fosters

the growth of free software and requires

equal participation by all users. Hence,

scholars and advocates struggle to articulate

the legal ground work that makes the GPL

license enforceable (Bornfreund 2005).

User Interface

Table 6 suggests that Open source

developments are usually web-based. Highest

frequency of 4 is associated with ‘web based’

as the most prominent interfaces. Next in the

rank is the win 32 followed by java/java

swing which shows that JavaScript, web

based and win32 are most appropriate. It

therefore implies that the most important

user interfaces for a quality open source

development project will have to either be

web based combined with or without java

swing and win32 user interface.

15 Communications of the IBIMA

Table 6: User Interface Frequency Analysis

User Interface

User Interface

Frequency

web based 4

Java/ java swing 2

win 32 3

Eclipse 1

xwindow sys (x11) 1

MacOS X 1

SDL 1

Command line 1

Topics Covered

Evidences on Table 7 show that projects with

at least 2 topics have the highest frequency of

5 out of the ten projects under survey while

next in rank is that 3 project have covered 3

topics. On the average, it shows that 3topics

could be covered by each project at most and

2 topics at best for quality, in terms of user

acceptability as obtained from the download

volume and project ranking. open source

development projects.

Table 7: Topics Covered

Topics covered Frequency

Valid 2 topics 5

 3 topics 3

 5 topics 1

 6 topics

1

 Total 10

The two topics for a quality open source

development project could be any two out of

Software Development, Accounting, and ERP

as analysed in the Appendix 1 below.

Results

In order to validate our open-onion model,

we have used 10-highly ranked source forge

project as earlier reported and Table 8 is a

Pearson correlation results for the linear

data sets, domain audience, user interface

and topics covered. From the table, it was

evident that in open source development

projects, the user interface impacts

negatively on the domain audience. The

lower the user interface variable, (e.g. 1 ≡

web based, appendix 2) the higher the

number domain audience in terms of service

industry to support (e.g. Manufacturing,

consumer service, finance and insurance

industry). Please refer to table 2 for further

clarifications.

Communications of the IBIMA 16

The sig. (2-tailed) implies that the P value is

signiSicant at 0.05 (P≤0.05). Meaning that the

acceptable confidence level should not be

less than 95%.

For this analysis, user interface has a

negative correlation with domain audience,

the lower the number of domain audience,

the higher the required user interfaces and

vice versa. This is with a high confidence

level of 95.9%. The topics-covered has a

significantly positive effect on domain

audience at a higher confidence level of

96.3%. However it was discovered that

topics-covered does not have any significant

effect on user interface and vice versa.

The License types have been categorized

broadly into two thus: GPL and Others as

shown on Table 9. This is because GPL

license ranks highest in the frequency

analysis of Table 5, meaning that it is the

most popular license amongst all license

types, based on these case studies.

Table 9: Licenses Analysed

License Types GPL Others

AVG Domain Audience 2.8 3.5

AVG User Interface 2.7 3.3

AVG Topics Covered 2.5 3.8

GPL license was therefore analysed based on

its relativity to average domain audience,

average user interface and average topics

covered across the board for the ten projects.

It was discovered that projects with average

domain audience of 2.8 would be ideal. The

average user interface required would be 2.7

and the average topics covered for a relevant

level of acceptance would be 2.5. Projects

with averages above these ranges are likely

not going to be popular based on these

results.

In order to ease the analysis, we have re-

categorized the Project ranking into high

rank (upper 5) and Low rank (lower 5) Table

10.

Table 8: Pearson Correlation Statistics

domain Audience

user

interface

topics

covered

Domain

Audience

Pearson Correlation 1.000

Sig. (2-tailed)

N 10.000

User

Interface

Pearson Correlation -.653* 1.000

Sig. (2-tailed) .041

N 10 10.000

Topics

Covered

Pearson Correlation .661* -.545 1.000

Sig. (2-tailed) .037 .103

N 10 10 10.000

*. Correlation is signiSicant at the 0.05 level (2-tailed).

17 Communications of the IBIMA

Table 10: Analysis by Project Rank

Project Rank High(upper 5) Low (Lower 5)

AVG Domain Audience 3.6 2.6

AVG User Interface 2.6 3.2

AVG Topics Covered 3.2 2.8

The higher the license variable gives rise to a

higher project rank and vice versa. That is for
license code of 1≡ GPL for example, in

appendix 1, then we expect to have higher

project ranking.

Meanwhile, the domain audience has impact

on the project ranking. The higher the

number of audience, the better the chances of

such projects ranking high. Topics covered

are also observed to have significant impact

on the Domain audience. License type has

effect on the project ranking. The higher the

license variable gives rise to a higher project

rank and vice versa. That is for license code
of 1≡ GPL for example, in appendix 1, then

we expect to have higher project ranking.

As evident from Table 8, the topics covered

have significant effect on domain audience,

meaning that the more the topics which are

covered, the higher the expected audience

resulting in higher project community

building. The user interface also impacts

negatively on the topics covered. Meaning

that in order to cover more topics, it is

needed to reduce the number of user

interfaces. For example, web based interface

tends to support more project topics than

other interfaces.

Conclusion and Future Work

In this article, we summarized the on-going

work on various aspects of open source

research. In contrast to most work in the

field of open source, our approach is focused

on the use of open onion model to improve

the understanding of open source

development.

The contributions of this article include the

presentation of open-onion framework,

which compensates the lack of adequate

understanding of the various components of

the open source development, and

identifying the correlations between open

source project parameters such as Domain

Audience, User interface, Topics covered and

License types.

Future research includes the validation of

open source success tree and all the layers

within the open onion model using Delphi’s

approach

Reference

Aberdour, M. (2007). "Achieving Quality in

Open-Source Software,” Software, IEEE

24(1): 58-64. Arun, P. G. and C. G. Paul

(1994). Onion: a methodology for developing

data-dominant systems from building blocks.

Proceedings of the conference on TRI-Ada

'94. Baltimore, Maryland, United States, ACM.

Asundi, J. (2005). "The Need for Effort

Estimation Models for Open Source Software

Projects," Proceedings of the fifth workshop

on Open source software engineering. St.

Louis, Missouri, ACM.

Banker, R. D. & Kauffman, R. J. (1992). "Reuse

and Productivity in Integrated Computer-

Aided Software Engineering: An Empirical

Study,” SSRN eLibrary.

Barnes, B., T. Durek, et al. (1988). 'A

Framework and Economic Foundation for

Software Reuse. Software Reuse: Emerging

Technology,' IEEE Computer Society Press:

77-88.

Barns, B. H. & Bollinger, T. B. (1991). "Making

Reuse Cost-Effective,” Software, IEEE 8(1):

13-24.

Communications of the IBIMA 18

Bornfreund, M. (2005). 'OpenSource Law,'

Open source legal issues DOI:

http://fr.creativecommons.org/articles/cana

da.htm

Brown, A. W. & Booch, G. (2002). "Reusing

Open-Source Software and Practices: The

Impact of Open-Source on Commercial

Vendors," Software Reuse: Methods,

Techniques, and Tools: 381-428.

Crowston, K., Annabi, H., Howison, J. &

Masango, C. (2004). "Effective Work

Practices for Software Engineering:

Free/Libre Open Source Software

Development," Proceedings of the 2004 ACM

workshop on Interdisciplinary software

engineering research.

Crowston, K. & Howison, J. (2003). "The

Social Structure of Open Source Software

Development Teams," OASIS 2003 Workshop

(IFIP 8.2 WG).

Crowston, K. & Howison, J. (2006). "Assessing

the Health of Open Source Communities,”

Computer-IEEE Computer Society- 39(5): 89-

89.

Fielding, R. T. (2005). 'Software Architecture

in an Open Source World,' Saint Louis, MO,

United states, Institute of Electrical and

Electronics Engineers Computer Society.

Foo, D. C. Y., Selvan, Z. A. M. M. & McGuire, M.

L. (2005).' Integrated Process Simulation and

Process Synthesis,' Chemical Engineering

Process (CEP) Magazine.

Gao, Y. & Madey, G. (2007). "Towards

Understanding: A Study of the

Sourceforge.Net Community Using Modeling

And Simulation," The Spring Simulation

Multiconference.

Glass, R. L. (1998). "Defining Quality

Intuitively,” Software, IEEE 15(3): 103-104,

107.

Goldman, R. & Gabriel, R. P.. (2005).

Innovation Happens Elsewhere Open Source

as Business Strategy, Morgan Kaufmann

Publishers, Elsevier.

Goldschlag, D., Reed, M. & Syverson, P.

(1999). "Onion Routing for Anonymous and

Private Internet Connections,”

Communications of the ACM 42(2): 39-47.

Grewal, R. Lilien, G. L. & Mallapragada,

G. (2006). "Location, Location, Location: How

Network Embeddedness Affects Project

Success in Open Source Systems,”

Management Science 52(7): 1043-1056.

Isoda, S. (1995). "Experiences of a Software

Reuse Project,” Journal of Systems and

Software 30(3): 171-186.

Kiczales, G., Lamping, J., Mendhekar, A.,

Maeda, C., Lopes, C., Loingtier, J.-M. & Irwin, J.

(1997). "Aspect-oriented Programming,"

ECOOP'97 — Object-Oriented Programming:

220-242.

Knight, J. C. & Dunn, M. F. (1998). "Software

Quality through Domain-Driven

Certification,” Annals of Software Engineering

5: 293-315.

Koch, S. & Neumann, C. (2008). "Exploring

the Effects of Process Characteristics on

Product Quality in Open Source Software

Development,” Journal of Database

Management 19(2): 31-57.

Koponen, T. & Hotti, V. (2005). "Open Source

Software Maintenance Process Framework,"

Proceedings of the fifth workshop on Open

source software engineering. St. Louis,

Missouri, ACM.

Krueger, C. W. (1992). "Software Reuse,” ACM

Computing Survyes 24(2): 131-183.

Lakhani, K. R. & Hippel, E. V. (2003). "How

Open Source Software Works: "Free" User-to-

User Assistance,” Research Policy 32(6): 923-

943.

Madey, G., Gao, Y., Tynan, R., Hoffman, C. &

Freeh, V. (2003). "Agent-Based Modeling and

19 Communications of the IBIMA

Simulation of Collaborative Social Networks,"

Americas Conference on Information Systems,

AMCIS 2003, ScientiSic commons. (2008).

Khan, M. A. Y. & Veitch, D. (2008). "Peeling

the 802.11 Onion: Separating Congestion

from Physical Per," Proceedings of the third

ACM international workshop on Wireless

network testbeds, experimental evaluation

and characterization. San Francisco,

California, USA, ACM.

Manabe, Y. & Okamoto, T. (2008).

"Anonymous Return Route Information for

Onion Based Mix-Nets," Proceedings of the

workshop on Applications of private and

anonymous communications. Istanbul,

Turkey, ACM.

McClure, C. (2001). "Software Reuse: A

Standards-Based Guide," Wiley-IEEE

computer society press.

Meijler, T. D. & Nierstrasz, O. (1995). "Beyond

Objects: Components," Languages et Modeles

a Objects, A Napoli (Ed.).

Mockus, A., R. T. Fielding, et al. (2002). "Two

Case Studies of Open Source Software

Development: Apache and Mozilla,” ACM

Trans. Softw. Eng. Methodol. 11(3): 309-346.

Oostendorp, N. (2009). "Using Networks to

Visualize and Understand Participation on

SourceForge.net," project. Final Year Project

Report.

Otte, T., Moreton, R. & Knoell, H. D. (2008).

"Applied Quality Assurance Methods under

the Open Source Development Model,"

Computer Software and Applications, 2008.

COMPSAC '08. 32nd Annual IEEE

International, IEEE Computer Society.

Paul, F., Goldschlag, D. M. & Reed, M. G.

(1997). "Anonymous Connections and Onion

Routing," Proceedings of the 1997 IEEE

Symposium on Security and Privacy, IEEE

Computer Society.

Peeling, N. & Satchell, J. (2001). "Analysis of

the Impact of Open Source Software,"

Technical Report, QinetiQ2001.

Pressman, R. S. (2001). Software

Engineering: A Practitioner's Approach,

McGraw-Hill 207-210.

Pressman, R. S. (2005). Software

Engineering: A Practitioner's Approach,

McGraw-Hill Education.

Raymond, E. S. (1999). The Cathedral and the

Bazaar: Musings on Linux and Open Source

by an Accidental Revolutionary, Cambridge,

MA,.

Rhodes-Ousley., M., B. Roberta., et al.

(November 10, 2003). Network Security, The

Complete Reference, McGraw-Hill.

Qureshi, M. R. J. & Hussain, S. A. (2008). "An

Adaptive Software Development Process

Model,” Advances in Engineering Software

39(8): 654-658.

Scotto, M., Sillitti,A. & Succi, G. (2007). "An

Empirical Analysis of the Open Source

Development Process based on Mining of

Source Code Repositories,” International

Journal of Software Engineering and

Knowledge Engineering 17(2): 231-247.

Showole, A., Ibrahim, S. & Sahibuddin, S.
(2008). "Industrial Application Development

with Open Source Approach," The Third

International Conference on Software

Engineering Advances, 2008. ICSEA '08. ,

IEEE.

Showole, A., Suhaimi, I., et al. (2008).

'Prospects of Open Source Adoption in

Education Projects in Nigeria,' International

Journal of Arts and Science (IJAS).

Siegel, D. S. & Wright, M. (2007). "Intellectual

Property: The Assessment,” Oxford Review of

Economic Policy 23(4): 529-540.

Communications of the IBIMA 20

Xu, J., Christley, S. & Madey, G. (2006).

"Application of Social Network Analysis to

the Study of Open Source Software," The

Economics of Open Source Software

Development. P. J. H. S. Jurgen Bitzer, Elsevier

B.V.: 247 - 270.

Xu, J., Gao, Y., Christley, S. & Madey, G. (2005).

"A Topological Analysis of the Open Souce

Software Development Community,"

Proceedings of the Proceedings of the 38th

Annual Hawaii International Conference on

System Sciences - Volume 07, IEEE Computer

Society.

Zhao, L. & Elbaum, S. (2003). "Quality

Assurance under the Open Source

Development Model,” Journal of Systems and

Software 66(1): 65-75.

Zheng, X., Zeng, D., Li, H. & Wang, F. (2008).

"Analyzing Open-Source Software Systems as

Complex Networks,” Physica A: Statistical

Mechanics and its Applications 387(24):

6190-6200.

Zuser, W., Heil, S. & Grechenig, T. (2005).

"Software Quality Development and

Assurance in RUP, MSF and XP: A

Comparative Study," Proceedings of the third

workshop on Software quality. St. Louis,

Missouri, ACM.

21 Communications of the IBIMA

Appendices

Appendix 1: Topics Covered Expanded

Project

no

Topics covered

1 code generators Project Mgmt Point-of-sale Accounting ERP CRM

2 Software

Development.

Enterprise AJAX

3 Object oriented ERP Accounting

4 Software

Development

text editor

5 Interpreter game/

entertainment

6 Version Control File management

7 Quality

Assurance

Build tool

8 build tools code generators Compilers debuggers interpreters

9 Software

Development

Dynamic content site

management

10 Testing Framework

Appendix 2 User Interface Coding

user interface Code

web based 1

web based & java swing 2

win 32 3

Command line 4

java & eclipse 5

xwindow sys (x11), win 32,

PDA, Cocoa(MacOS X), SDL

6

Appendix 3 Licence Type Coding

license Type Code

GNU Public License (GPL) 1

Mozilla Public License 2

Lesser GNU Public License

(LGPL)
3

Barkley (BSD) 4

Eclipse Public License 5

Communications of the IBIMA 22

Appendix 4

Rank table snapshot

(number in parentheses represents rank for designated statistics type)

Project Rank Score Downloads
Logo

Hits

Site

Hits
CVS SVN GIT

Release

Age

Last

Login

Tracker

Entries

ML

Posts

Forum

Posts

Project

X

1 39,830,902

4,109 (282)
113,428

(38)

26,444

(312)

0

(0)

0

(10,386)

301

(3)
31 days 1 day 268 (4) 0 (0)

105

(12)

