
IBIMA Publishing

Communications of the IBIMA

http://www.ibimapublishing.com/journals/CIBIMA/cibima.html

Vol. 2011 (2011), Article ID 875759, 10 pages

DOI: 10.5171/2011.875759

Copyright © 2011 N. Sugumaran and S. Ibrahim. This is an open access article distributed under the

Creative Commons Attribution License unported 3.0, which permits unrestricted use, distribution, and

reproduction in any medium, provided that original work is properly cited. Contact author: N. Sugumaran

e–mail: sugumaran2@live.utm.my

An Evaluation on Software

Redocumentation Approaches and

Tools in Software Maintenance

N. Sugumaran
1
 and S. Ibrahim

2

1
Universiti Tunku Abdul Rahman (UTAR), Malaysia

2
University Technology Malaysia, Malaysia

__

Abstract

This paper describes an evaluation on software documentation generated using

redocumentation approaches and tools. The evaluation is based on the selected Document

Quality Attributes (DQA). Firstly, the paper presents an overview of the software

redocumentation and the main components involved in the process for better understanding of

the redocumentation. Consequently, several approaches and tools are highlighted in the context

of aiding understanding to support the software evolution. Finally, the evaluation identifies

some aspects of DQA that might benefit from refinement to better reflect the redocumentation

approaches and tools capabilities that support the software maintenance.

Keywords: Software Redocumentation, Reverse Engineering, Software Maintenance, Program

Understanding

__

Introduction

Software redocumentation is one of the

approaches for aiding in program

understanding to support the maintenance

and evolution. According to (Elliot and James

1990), “Redocumentation is a creation or

revision of a semantically equivalent

representation within the same relative

abstraction level”. In other words,

redocumenting code is a transformation

from code (and other documents and

stakeholder knowledge) into new or updated

documentation about code. It becomes an aid

for the recovery and recording of software

comprehension. Since software

comprehension is the most expensive part of

software maintenance, redocumentation is

the key to software maintainability. (K.Lano

1994) has specified three main goals for

redocumentation process. Firstly, to create

alternative views of the system to enhance

understanding, for example (Benedusi et al.

1989) explained the generation of a

hierarchical data flow or control flow

diagram from the source code. Secondly, to

improve the current documentation. Ideally,

such documentation should have been

produced during the development of the

system ad updated as the system changed.

This, unortunately, is not usually the case.

Thirdly, to generate documentation for a

newly modified program. This aimed at

facilitating future maintenance work on the

system preventive maintenance. Generating

quality documentation through

redocumentation process is important for

program comprehension and software

evolutions.

Reverse engineering and redocumentation

output is thought to be the same. However,

reverse engineering extract the design

information which includes data flow

diagram, control flow graphs (CFG), metrics

and etc. The redocumentation tools

Communications of the IBIMA 2

emphasize on reformatting tools. Otherwise

known as “pretty printers”, reformatters

make source code indentation, bolding,

capitalization, etc. consistent thus making the

source code more readable.

In this paper, we report the results gained

from the empirical study on

redocumentation approaches. Next, the

approaches and tools are evaluated based on

the Documentation Quality Attributes (DQA)

for software documentation. The purpose of

this evaluation is to assess the quality of the

documentation produced via reverse

engineering. However, in our context the

evaluation is used specifically to evaluate the

quality of document produced from

redocumentation process.

The remainder of this paper is organized as

follows. Section 2 describes the process of

software redocumentation. It is followed by

section 3 which offers the approaches and

tools for redocumentation process. Section 4,

provides evaluation of these current

approaches and tools based on a set of

criteria and Binally section 5 concludes this

paper.

Fig1. Redocumentation Process

Software Redocumentation Process

Mainly, the redocumentation process is

viewed as a knowledge rescue process as

shown in Fig 1. One of the ways to implement

the redocumentation process is using the

reverse engineering. The redocumentation

process consists of 5 main components

namely; software work product, parser,

system knowledge base, document generator

and software documentation. The following

describes these main components:

• Source Materials (SM):

SM can be source code, configuration files,

build scripts or auxiliary artifacts. Auxiliary

artifact can be a data gathering, manuals, job

control and graphic user interface which help

to understand the source code. The author

(Shihong et al. 2005) explained the approach

for redocumentation process and

emphasized on the importance of the

software work product to produce

documentation for different type of

information.

• Parser:

Parser is used to extract necessary

information from SM and store them into the

repository or system knowledge base. The

importance of the parser is to return the

relevant information, using specific

technique. There are parsers which only

focus on specific language such as tools

created by (Simon 2002) and also focus on

various types of programming language such

as Universal Report specified by (Tadonki

2004).

• System Knowledge Based:

According to (Shirabad 2003), knowledge

based is a collection of simple fact and

general rules representing some universe of

discourse. The purpose of this component is

to store extracted information from the SM in

3 Communications of the IBIMA

order to describe the context of information.

This component becomes the heart of the

system to allow the tools accessing the

required information. In other words, all

parts of the model are able to access and

organizes the information from the

knowledge based. There are researches

which only focus on the knowledge based to

make sure that the knowledge retrieved

supports the best for program

understanding. Knowledge based works

closely with the knowledge processing to

recover and revealed the various

relationships implicit in the SM (Inc 2009).

The processed knowledge is represented in

different types of forms such as; data

modeling and procedure or function. As an

example, (Holger M. Kienle 2008) mentioned

that Rigi uses the RSF file as a repository and

presents the knowledge presentation in

procedural.

• Document Generator:

 Knowledge produced from the knowledge

based is used by the Document Generator to

search and select the knowledge that is not

presented explicitly. Generally, Document

Generator is used as a management tool to

identify needed component to generate new

software work product.

• Software Documentation:

Finally, the processed knowledge is

presented in various form of documenting to

the user (developer, maintainer, software

engineer or end user) such as; directed

graph, annotation, visualization, metrics or in

documentation. The software components

are extracted including modules, procedures,

classes, subclasses, interface, control flow,

composition and enslavement among the

component. The software documentation can

be categorized into Textual and Graphics.

Textual documentation ranges from inline

style which is written informally, to

personalized views which are dynamically

generated from a document database. HTML

or XML are considered as a more flexible

form of textual documentation which allows

automating the indexing and creating

hyperlink between document partitions or

sections. The least mature type of graphical

documentation is a static image, which may

use non-standard representations of

software artifacts and relationships. The

most advanced graphical documents are

editable by the user and are better enabling

them to create customized representations of

the subject system. Software visualization

technique is used to present graphical

documentation which helps the maintainer

to understand.

Classification of Redocumentation

Approaches

This section will present recent state-of-art

approaches and tools that have produced

solution for redocumentation process. Most

of the approaches and tools are developed

for reverse engineering which are generally

compared to the redocumentation process.

However, we have identified some significant

approaches and tools which can contribute to

further development of the quality

documentation from the redocumentation

process. The following redocumentation

process is classified based on approaches

and tools.

Approaches

The following are the approaches used in

redocumentation process to create various

types of documentation.

• XML Based Approach:

XML based approach is one of the common

redocumentation approaches used to

generate the documentation. It contains

structured information that extracts the

content and the meaning of the

documentation. XML is reassembled from

HTML to make it more useful for program

documentation. (Jochen et al. 2001) stated

that by using XML the technical writer or

software engineer can create their own

format, such as <CONSTRANT>, <TASK>,

<FILE>, <VARIABLE> and<FUNCTION>.This

feature helps to identify the implicit semantic

of the document. The nature of XML shows

that the information in hierarchical help to

understand the program more easily. It also

validates the data captured from the

program to make sure that the data can be

exchanged between different software

systems. (Jochen et al. 2001) used the XML as

Communications of the IBIMA 4

a knowledge base to redocument the

program and integrate every level in

redocumentation process to produce high

quality documents(Jochen et al. 2001). In the

first level, SM captured the data from source

code and blended it with other resources

(manual, programmer, and software

documents) to have more data sources.

Following that, commercial or specific parser

is used to extract the structure in the

extraction process. In level 2, captured

structure or data from various SM are

merged into one repository to facilitate

knowledge processing. One of the important

activities in the level 2 is to uncover

important information hidden in the

gathered data (Jochen et al. 2001). Finally, in

level 3, generated documentation can be

viewed in both textual and graphical

representation. The output produced can be

used back in the next iteration of data

gathering phase to refine the information

contained in the repository.

• Model Oriented Redocumentation:

(Feng and Hongji 2007) have proposed the

Model Oriented Redocumentation approach

to produce models by using Model Driven

Engineering (MDE) technique from existing

systems and documentations which are

generated based on the models. The main

objective of the MDE is to raise the

abstraction level in program specification

and increase the automation in program

development. The MDE concept is suited the

redocumentation process, specifically, to

produce higher level of abstraction in the

final documentation. Basically, the MDE

concept is merged with the Model Driven

Architecture (MDA) in general and fastened

with the Technological Spaces(TS) (Ivan

Kurtev 2002). The first step is to transform

the legacy system into formal models. These

formal models are written using a formal

language and transform into TSs. Are

Generated TSs are stored in repository and

produced documentation in a uniform way.

To support the framework, the tool called

Maintainer Integration Platform(MIP) is

developed and supported by Wide Spectrum

Language (WSL) to present high and low

level abstraction(Feng and Hongji 2007).

• Incremental Redocumentation:

One of the common issues in maintaining the

system is to record the changes requested by

customer or user to occur in the source code.

Often, the program comprehension is not

stored and integrated in a single location

which is done by the programming team. The

team, by having code ownership will

overwork some of the programmers and

leave others unutilized. (Vaclav 1997, Rajlich

2000) have used the Incremental

Redocumentation approach to rebuild the

documentation incrementally after the

changes are done by the programmer. As a

first step, the change request will be

collected, which is normally received from

customers. Next, the collected change

request will be analyzed and assigned to the

programmer to implement the change

request. The programmer will do the changes

accordingly and confirm the correctness of

the system. Finally, by using the PAS tool the

program comprehension achieved during the

change request implementation is recorded.

According to (Rajlich 2000), the PAS also

helps to store the information either top-

down or bottom-up, complete or partial and

also whether confirmed or tentative. The

advantage of PAS is using the hypertext in

the style of World Wide Web in which there

is no any limit for the number of partitions or

their contents. The main partition is domain

partition which is important to understand

the application domain.

• Island Grammar Approach:

Grammar definition language SDF is used as

a parser to define the island

grammar(Verhoeven 2000). (Mark G. J. van

den Brand 1996) mentioned that SDF will

return parse tree in Java object which is

encoded in aterm format. The result can be

written in a repository which can be joined,

queried and used in the process of document

generation. The filtering data process starts

during the analyses phase. The output can be

abstracted in different layers depending on

the documentation requirement. (Arie van

and Tobias 1999) used Cobol system to

generate hierarchy associated with

documentation requirements. On the other

5 Communications of the IBIMA

hand, (Moonen 2001) explained, in details,

the supporting tool for island grammar

approach called Mangrove.

• DocLike Modularized Graph(DMG):

Based on the research study by (Shahida

Sulaiman 2003), DocLike Modularized

Graph(DMG) provides the template to

present the artifacts extracted as a software

design documentation. The user is able to

update basic description related to each

specific design using Description Panel. The

Content Panel focuses on the representation

of the modules and the associated graph is

displayed accordingly in Graph Panel.

Description Panel is used to describe the

associated section manually. The DocLike

Viewer Prototype Tool system can be

expressed by using the redocumentation

framework. As an input, they used C source

code and the existing parser provided by

Rigi. In the later section the author is going to

discuss this tool in details. DocLike Viewer

uses the existing storage provided by Rigi

and filters the data by selecting only the

required information to be visualized in

DocLike Viewer.

Tools

The following are the tools developed to

redocument the source code to generate

documentation.

• Rigi:

Rigi uses a reverse engineering approach to

extract the artifacts from the source code,

organizes them into medium level

abstractions, and shows the output

graphically(Müller 1996). According to

(Kenny et al. 1995), there are three types of

methodology used in Rigi, which are

rigireverse, rigiserver and rigiedit.

Rigireverse is a parser that supports C and

COBOL language and also a parser for Latex

used to analyze the documentation. The main

function of Rigiserver is to store the

information extracted from the source code

in the repository. The rigiedit is an

interactive, window-oriented graph editor to

manipulate the program representations. In

Rigi, the first phase involves parsing the

source code and storing the extracted

artifacts in the repository in Rigi Standard

Format (RSF) file. There are two types of Rigi

Standard Format (RSF) files. First, is an

unstructured Rigi Standard Format (RSF) file

which may contain duplicate tuples. The

other is structured Rigi Standard Format

(RSF) files used for displaying graphical

architecture. Files contain information about

the nodes (e.g., functions, variables, data

structures, etc.) and arcs (e.g., function to

function calls, or function to the variable

calls). There is a tool called sortrsf which

converts an unstructured file into a

structured file. Once a C programming input

file is being parsed by the Rigi parser, a RSF

file is produced and it is sent to Rigi editor

for further processing. Rigi editor is a graph

editor which uses windows based interface.

It is developed using a TCL scripting

language. Rigi editor is used for architecture

display, traverse, and modify the graphical

model. (Margaret-Anne et al. 1997) stated

that the second phase involves cluster

functions into subsystems according to the

rules and principles of software modularity

to generate multiple views called Simple

Hierarchical Multi-Perspective view, layered

hierarchies for higher level abstractions.

Finally, the Rigi Editor assists the

maintainers in understanding the structure

of large, integrated, evolving software

systems.

• Scribble:

Scribble focuses on generating library

documentation, user guides and tutorials for

PLT scheme(Matthew et al. 2009). It

combines all of these threads producing a

scribble language or tool that spans and

integrates document categories. Scribble was

built using PLT Scheme technology, which is

built based on academic and also on practical

tradition. It is suitable to use for tasks related

to application development, including GUIs

and web services and supports the creation

of new programming languages through a

rich expressive syntax system. The features

in PLT schemes help to develop Scribble

system more easily and Scribble is just an

extension of the PLT schema. So, the main

input and the parser in the documentation

process is the PLT Scheme itself. Central

PLanet package repository is used to store

the libraries. The final output is produced in

Communications of the IBIMA 6

HTML form which consists of libraries with

the guides and tutorials. In fundamentals, the

basic concept is to construct representations

of documents using scheme functions and

macros.

• Haddock Tool for Haskell

Documentation:

Haddock Tool is a tool for generating

documentation from the source code

automatically. Haddock, primarily, focuses on

generating the library documentation from

the Haskell source code(Simon 2002).

• Universal Report

(Tadonki 2004) has presented the Universal

Report, a tool used to analyze the source

code and documents the software system.

The main objective of this tool is to analyse

and generate the structured and well

formatted document of various types of

languages such as C++. Visual Basic, Ada,

Cobol, Fortran, Java, Assembler,Perl, PHP,

Python and many others. It uses pattern

matching algorithm and compilation

techniques to extract the information from

the source code and generate the

documentation in HTML, Latex and plain text

files(Tadonki 2004). The HTML output has a

lot of features including searching the script

for text over the entire documentation, an

online commenting and annotating system, a

dynamic flowchart, routine call graph,

screenshots from form files, detailed analysis

and dynamic composition of each routine. In

addition, the Universal Report can also read

the database files and generate the detailed

report of the structure and elements such as

table, fields and reports. However, the

features in Universal Report tool emphasize

redocumentation of source code in the

implementation level only. It doesn’t focus on

higher abstraction level such as design or

specification level.

Comparative Evaluation

DQA are the simplified attributes from the

assessment of reverse engineering

techniques and tools (Shihong and Scott

2003, Scott 1998). In this paper, the criteria

have been restructured to evaluate the

document produced from redocumentation

process. The evaluation criteria consist of

number of criteria namely; efficiency, format

(textual and graphical) and granularity.

• Efficiency: Efficiency refers to the level of

direct support the documentation provides

to the software engineer engaged in a

program understanding task.

• Format: Format refers to the type of

document produced either in textual or

graphic. Textual is the documentation from

inline prose in an informal manner to

personalized view. Graphic format presents

the software artifacts and relationships in

graphical form.

• Granularity: Refers tothe level of

abstraction which describes the

documentation.

7 Communications of the IBIMA

Table 1: Summary of Criteria and Level in DQA

Quality

Level

Format Granularity Efficiency

Text Graphic

Level 1 • Explained in low

level

functionality.

• No standard

format and style.

• Requires

developer

experience.

• Static graph as a

hardcopy-like

image can be in

format such as GIF

or PDF and

informal.

• Read only graphic.

• Documentatio

n at level of

source code.

• Comment on

algorithm and

source code.

• Generated

manually in

textual form.

Level 2 • Standard

documentation

and includes

also the

developer’s own

format

• Using a standard

template

documentation

• Standard

representation in

the graphical

form.

• Using template

such as UML.

• One level

above design

patterns.

• Helps

developer to

understand

high level

rational.

.

• Semi-automatic

using reverse

engineering.

• Static and

reflects the

system changes

at the time of

generation.

Level 3 • Hyperlinked add

indirection to

the text.

• Can be text,

graphic or

multimedia

commentary.

• Animated

graphical

documentation in

visual manner.

• Users have little

interaction.

• High level

design

software

architecture.

• Able to make

changes based

on system

architecture.

• Dynamic and

semi-

automatically

reflect the

changes as long

as the

developer

direct the tools.

Level 4 • Contextual

Documentation

using tools

support.

• Enhances the

information on

the context.

• Interactive and

permits the user

to navigate from

one node to next

level node.

• Can chase down

the artifacts and

relationships.

• Better response to

user feedback.

• Captures the

system

requirements

from the point

of view of the

user.

• Multiple level

of abstraction.

• Automated and

static but no

need for

developer

involvement.

Level 5 • Personalized

document for

the reader

• Multiple view of

the system.

• Editable graphical

documentation.

• Able to add new

nodes and can be

saved in the

repository (if

available).

• Product line

documentation

• Captures the

commonalities

and variability

in the product.

• Defines the

domain

knowledge.

• Fully automatic

and dynamic.

• Produces the

documentation

on demand.

Communications of the IBIMA 8

Table 2: Comparing Redocumentation Approaches

Table 3: Comparing Redocumentation Tools

Each of the criteria measured based on 5

levels. Level 1 indicates the lowest level and

level 5 is the highest level of the document

quality. The summary of each criteria and the

maturity level are shown in Table 1. Based on

the evaluation criteria above, the approaches

and tools have been evaluated. The

evaluation results are shown in Table 2 for

approaches and Table 3 for tools. Table 2 and

Table 3 exemplify the quality level achieved

by the approaches and tools to generate the

documentation. The result shows that the

strength of existing approaches and tools

emphasize on the different levels of the

redocumentation process. The example of

model oriented approach shows the highest

maturity level for the granularity criteria

(L3). The Rigi tools criteria shows the highest

level for the graphics (L4) and Scribble tool

shows the highest for efBiciency (L4).

However, XML approaches shows moderate

level and balance for each except for

efBiciency. The analysis in Table 1 and Table

2 shows the quality of the documents

produced depending on the research

emphasis on the specific component in the

redocumentation process. Like Rigi, the

emphasis is on visualization (output), Island

grammar approach for extracting syntatic

structure of the code (parser) and Model

Oriented for software evolution (knowledge

based). Generally, XML based approach is

very common approach that is used

nowadays. The advantage of this approach,

as compared to other approaches, is that it

can create different types of view according

to the user needs. However, the abstraction

is in medium level and it will be difficult to

show semantically the related knowledge of

the same domain. Model Oriented approach

is useful for system evolutionary because it

allows showing he exact characteristics as

the original system or the domain level. The

maintainer has a better view and

understanding to handle maintenance task.

Island grammar approach is used at the

parser level and it contributes to speeding up

the extraction process and concentrates on

the data analysis for the documentation.

Based on the tools the granularity is still

Approaches

Benchmarks

Format Granularity Efficiency

 Text Graphic

XML Based

Approach
L3 L2 L2 L2

Model Oriented

Approach
L2 L3 L3 L2

Incremental

Approach
L2 - L2 L3

Island Grammar

Approach
L3 L1 L2 L2

DocLike

Modularized

Graph Approach

L3 L3 L2 L2

Tools

Benchmarks

Format
Granularity

Efficiency

 Text Graphic

Rigi L2 L4 L2 L2

Haddock Tool L3 - L2 L4

Scribble Tool L3 L1 L2 L4

Universal Report L3 L1 L1 L4

9 Communications of the IBIMA

considered low and medium level. Most of

the tools are developed only until the level of

the view the software architecture but not on

the requirement level of the system.

The text format documentation produced by

all the approaches and tools still are in the

medium level in which most of the

documents created are in the hyperlink such

as XML based approach. On graphic, Rigi is

one of the tools which helps to view the

graphic form of the software component and

allows navigating to certain extends.

However, other approaches and tools

emphasize only on viewing the graphics but

do not allow navigating using graphic. In

term of efficiency, the haddock and scribble

tools are able to automate the

redocumentation process compared to other

approaches and tools. However the

automation process is easy because it

involves the low level abstraction.

Conclusion

This paper aimed to provide general

overview and compare the progress in

software redocumentation. The problem

with most of these approaches and tools for

redocumentation is that the granularity level

is low and it limits the understanding on the

domain knowledge. The maintainer needs a

better understanding of the semantic

relationships among the component from

real world domain point of view, especially, if

the maintainer is the new member in the

program domain. The model oriented

approach tries to solve this problem,

however, the efficiency level is low and not

able to search the information as needed. The

main issues that is needed to be addressed

here is that, the software documentation

produced from redocumentation process

needs to emphasize on the importance of

explicit documenting domain knowledge to

improve the program comprehension in

software maintenance and to be presented in

standard documentation.

Acknowledgments

This research is supported by Ministry of

Science and Technology and Innovation

(MOSTI), Malaysia and Universiti Teknologi

Malaysia (UTM).

References

Benedusi, P., Cimitile, A. & De Carlini, U.

(1989). “A Reverse Engineering Methodology

to Reconstruct Hierarchical Data Flow

Diagrams for Software Maintenance,”

Software Maintenance, 1989., Proceedings.,

Conference on, ISBN:0-8186-1965-1, 06

August 2002, Miami,FL,USA 180-189.

Chikofsky, E. J. & Cross II, J. H. (1990).

“Reverse Engineering and Design Recovery:

A Taxonomy,” IEEE Software, 7(1), 13-17.

Chen, F. & Yang, H. (2007). “Model Oriented

Evolutionary Redocumentation,” 31st Annual

International Computer Software and

Applications Conference, 2007. COMPSAC

2007, ISBN:0730-3157, Beijing, 543-548.

Flatt, M., Brazilay, E. & Findler, R. B. (2009).

“Scribble: Closing the Book on Ad Hoc

Documentation Tools,” Proceedings of the

14th ACM SIGPLAN International Conference

on Functional Programming, ISBN:978-1-

60558-332-7, New York, NY, USA, 109-120.

Hartmann, J., Huang, S. & Tilley, S. (2001).

“Documenting Software Systems with Views

II: an Integrated Approach Based on XML,”

Proceedings of the 19th annual international

conference on Computer documentation,

ISBN:1-58113-295-6, New York, NY, USA,

237 - 246.

Huang, S. & Tilley, S. (2003). “Towards a

Documentation Maturity Model,” 13th IEEE

International Workshop on Software

Technology and Engineering Practice

(STEP'05),ISBN:1-58113-696-X, New York,

NY, USA, 93 - 99.

Huang, S., Tilley, S., Van Hilst, M. & Distante,

D. (2005). “Adoption-Centric Software

Maintenance Process Improvement via

Information Integration,” Software

Technology and Engineering Practice, 2005.

13th IEEE International Workshop on,

ISBN:0-7695-2639-X, IEEE 25-34.

Inc, B. S. (2009). “Reverse Engineering,”

[Online], Business Software Inc., [March

02,2010], http://bus-software.com/re.htm

Communications of the IBIMA 10

Kienle, H. M. & Muller, H. A. (2008). “The Rigi

Reverse Engineering Environment,”

Proceedings of the International Workshop

on Advanced Software Development Tools

and Techniques, Paphos, Cyprus, July 8,

2008.

Kurtev, I., Bezivin, J. & Aksit, M. (2002).

“Technological Spaces: an Initial Appraisal,”

CoopIS, DOA'2002 Federated Conferences,

Industrial track,Irvine

Lano, K., Haughton, H. (1994). “Reverse

Engineering and Software Maintenance : A

Practical Approach," Mc-Graw Hill, London.

Marlow, S. (2002). “Haddock, a Haskell

Documentation Tool,” Proceedings of the

2002 ACM SIGPLAN workshop on Haskell,

ISBN:1-58113-605-6, New York, NY, USA, 78

- 89.

Moonen, L. (2001). “Generating Robust

Parsers Using Island Grammars,”

Proceedings of the Eighth Working

Conference on Reverse Engineering

(WCRE'01, ISBN:0-7695-1303-4,

Washington, DC, USA, 13-22.

Müller, H. A. (1996). “Rigi User's Manual,”

[Online], University of Victoria, [July

18,2007],

http://www.rigi.csc.uvic.ca/downloads/rigi/

doc/user.html

Rajlich, V. (1997). “Incremental

Redocumentation with Hypertext,”

Proceedings of the 1st Euromicro Working

Conference on Software Maintenance and

Reengineering (CSMR '97), ISBN: 0-8186-

7892-5, IEEE Computer Society Press, 68 -

72.

Rajlich, V. (2000). “Incremental

Redocumentation Using the Web,” Software,

IEEE, 17(5), 102-106.

Shirabad, J. S. (2003). “Supporting Software

Maintenance by Mining Software Update

Records,” 17th IEEE International

Conference on Software Maintenance

(ICSM'01), ISBN: 0-7695-1189-9,

Washington, DC, USA, 22.

Storey, M-A. D., Wong, K. & Muller, H. A.

(1997). “Rigi: a Visualization Environment

for Reverse Engineering,” Proceedings of the

19th international conference on Software

engineering, ISBN:0-89791-914-9, New York,

NY, USA, 606 - 607.

Sulaiman, S., Idris, N. B., Sahibuddin, S. &

Sulaiman, S. (2003). “Re-documenting,

Visualizing and Understanding Software

System Using DocLike Viewer,” Proceedings

of the 10th Asia-Pacific Software Engineering

Conference (APSEC’03),ISBN:0-7695-2011-1,

Washington, DC, USA, 154 - 163.

Tadonki, C. (2004). “Universal Report: a

Generic Reverse Engineering Tool,” 12th

IEEE International Workshop on Program

Comprehension (IWPC'04),ISBN: 0-7695-

2149-5, 266-267.

Tilley, S. (1998). “A Reverse-Engineering

Environment Framework,” [Online], Carnegie

Mellon Software Engineering Institute,

[25/11/2010], www.sei.cmu.edu/reports

Van Den Brand, M., Klint, P. & Verhoef, C.

(1996). "Core Technologies for System

Renovation," [Online], Springer-Verlag, [May

12,2010],

http://citeseerx.ist.psu.edu/viewdoc/summa

ry?doi=10.1.1.26.3744

Van Deursen, A. & Kuipers, T. (1999).

“Building Documentation Generators,”

Proceedings of the IEEE International

Conference on Software Maintenance,

ISBN:0-7695-0016-1, 06 August 2002,

Oxford, 40 - 49.

Verhoeven, E-J (2000). “Cobol Island

Grammer in SDF,” [Online], University of

Armsterdem, [15/2/2010],

http://citeseerx.ist.psu.edu/viewdoc/summa

ry?doi=10.1.1.12.8491

Wong, K., Tilley, S. R., Muller, H. A. & Storey,

M-A. D. (1995). “Structural

Redocumentation: A Case Study,” 12(1), 46-

54.

