
IBIMA Publishing

Communications of the IBIMA

http://www.ibimapublishing.com/journals/CIBIMA/cibima.html

Vol. 2012 (2012), Article ID 532248, 9 pages

DOI: 10.5171/2012.532248

Copyright © 2012 Benneth Christiansson. This is an open access article distributed under the Creative

Commons Attribution License unported 3.0, which permits unrestricted use, distribution, and reproduction

in any medium, provided that original work is properly cited. Contact author: Benneth Christiansson

E-mail: Benneth.Christiansson@kau.se

Lean Integration Using Open Source Based

Infrastructure and an Integration

Competency Center Approach

Benneth Christiansson

Redpill Linpro AB, Sweden and Department of Information Systems and Project Management,

Karlstad University, Karlstad, Sweden

__

Abstract

In this paper a set of successful Enterprise Application Integration projects are analyzed and

common characteristics are identified. These characteristics are then distilled into a set of key

success factors. The empirical foundation for this study is the active participation in a number of

successful EAI projects, as a consequence thereof we classify the research method as action

research. We can note that common key success factors are the use of common canonical

formats for data exchange, open source and ESB for EAI infrastructure, enterprise integration

patterns, and the establishment of an integration competency center. The possibility to enable

successful and maintainable EAI should be of crucial interest for basically all of todays

businesses, where we only see an increased need for successful EAI both in a business as well as

in a business to business perspective.

Keywords: EAI, Open Source, Lean Integration.

__

Introduction

This paper describes a set of key success

factors identified as common denominators

in several studied Enterprise Application

Integration (EAI) projects. The possibility to

enable successful and maintainable EAI

should be of crucial interest for basically all

of todays businesses. Wether we talk about

Service Oriented Architecture (SOA) or EAI

we see an increased need for successful EAI

both in a business as well as Business to

Business (B2B) perspective. In this paper

we address key success factors we would

classify as being part of the traditional

software engineering discipline (Pressman,

1992; Brooks Jr, 1987) adapted to the

special case of integration/service

development. Gu and Lago (2009, p. 5)

defines this specific subdiscipline of

software engineering as Service-Oriented

system engingeering (SOSE):

“…addresses systematic, disciplined and

quantifiable approaches to develop service-

oriented systems. A common concept shared

among these approaches is software being

used as a service for consumption.”

The ultimate goal of service technologies is

an IT infrastructure consisting of

cooperating services where application

components are assembled with little effort

into a network of services that can be

loosely coupled to create dynamic business

processes and agile applications that span

organizations and computing platforms

(Leymann, 2005). Working with service

development and service maintenance does

however place new demands on businesses

regarding organization, skills and

methodology (Papazoglou et al., 2007;

Rosen et al., 2008).

Integration Competency Center

An Integration Competency Center (ICC)

can be defined as a management,

coordination and operational team,

responsible for assisting other projects with

Communications of the IBIMA 2

their EAI needs throughout the whole

organization (Schmidt, 2009; Informatica

Inc., 2005; Stelzer, 2010). The team will be

responsible for development and

government of specific integrations offered

as consumable services to the organization.

The ICC will also possess the key knowledge

required for the effective development of

successful maintainable integrations

between oftentimes disparate business

areas.One of the keys to effective

development is the ability to (re)use

existing services (Christiansson and

Christiansson, 2006; Hohpe and Easy, 2007;

Rosen et al., 2008). ICC provides the

direction, control, optimization, consistency

and long-term focus that successful and

maintainable integration projects require

(Jotham and Toivanen, 2010; Schmidt and

Lyle, 2010).

Enterprise Application Integration

Enterprise Application Integration (EAI) is

a business need to enable heterogenous

applications, in one business or between

several businesses, to communicate and

exchange data to achieve business

objectives (Cummins, 2002; Land and

Crnkovic, 2004). The requirements for

these integrations are that they need to be

built in a seamless reliable fashion

irrespective of platform and geographical

location of these applications. EAI can be

viewed as messages passed between

heteogenous applications where messages

are delivered, accepted, rejected,

transformed translated and routed in

accordance with requirements defined in

business processes. Usually messages

transportation is asynchronous but if a

business need requires it it can be

synchronous as well. There are two basic

architectures to achieve EAI, 1) hub/spoke

and 2) bus architecture. Both of these can

be used to develop integrations oftentimes

the integrations are referred to as services.

Such a service can be viewed as a part of a

SOA (Goel, 2007; Rosen et al., 2008). In our

experience EAI is one of the major driving

forces to implement a SOA in a business. In

our experience the SOA approach does not

need to reach further into the IT

infrastructure to be successful, in fact we

would argue that taking the larger leap and

restructuring the whole infrastructure to

SOA is attached with larger risks and the

potential of failure is dramatically

increased. 1. Hub/Spoke architecture uses a

centralized broker a so called “Hub” and

adapters the “Spokes” which connect

applications to the Hub. Spokes connect to

applications and convert application data

format to a message which the Hub

understands and vice versa. The Hub

brokers all messages and takes care of

content transformation/translation of the

incoming messages into formats that the

receiving application understands. The Hub

is also responsible for the routing of the

messages, i.e. making sure the message is

delivered to the correct Spoke. 2. Bus

architecture uses a central messaging

backbone a so called “Bus” for message

propagation. Applications publish messages

to the bus using adapters. These messages

are routed to subscribing applications

using the Bus. See Figure 1 for an example

of a Bus architecture.

Empirical Studies

Stelzer (2010, p. 16) have performed a

literature review covering research

production in the Enterprise Application

Integration area. In this study one of the

findings is the lack of documentation of

results from empirical research:

“Compared to the considerable amount of

publications on enterprise architecture in

general, the number of articles presenting

research findings on enterprise architecture

principles is rather low.“

This state of affairs in the research

community is further elaborated by the

same authors Stelzer (2010) when they

claim that:

“Extending the basis of case studies. There

are only few publications that describe

practical experience with enterprise

architecture principles. Since this research

field has not yet been explored in detail and

theoretical foundations are meager we need

more explorative research. More case studies

might help to shed light on key issues and

success factors when formulating and

deploying architecture principles.”

3 Communications of the IBIMA

Papazoglou et al. (2007, p. 70) describes in

their paper “Service-Oriented Computing:

State of the Art and Research Challenges”

that research covering service-oriented

software engineering is a topic in need of

focus:

“Engineering of service applications. SOA-

based applications require a service-

oriented engineering methodology16 that

enables modeling the business envi- ronment,

including key performance indicators of

busi- ness goals and objectives; translates the

model into service design; deploys the service

system; and tests and manages the

deployment.”

We have for several years been able to do

first hand observations while participating

in several large and small scale Business

Integration projects in Scandinavia, both in

the public as well as in the private sector.

All case studies are performed in close

cooperation with staff from Redpill Linpro

AB. Redpill Linpro AB is the largest provider

of professional services for open source

based enterprise applications in

Scandinavia. During the years 2008 to 2011

we have actively participated in a range of

different types of Business Integration

projects ranging from large and mature ICCs

(over 50 governed integrations and

approximately 20 team members in the

ICC) to small and freshly started ICCs

covering approximately 4 team members.

We classify this research as mainly action

research where the authors also are active

participators in the actual projects, this

implies that we as researchers also affect

the outcome of the projects and thereby

indirectly affect the outcome we base our

conclusions on, the possible effects this can

have on the viability in our conclusions is

further elaborated in the section called

“Methodology” below. During the projects

we have actively kept a journal noting the

day to day activities performed and by

analyzing these entries using a Grounded

Theory inspired approach (further

elaborated below) together with findings

from fellow researchers we believe the

foundation for our findings is solid and

viable even though action research can

biase the empiricism used. The used

empirical material is collected during the

period august 2008 to october 2010.

The Challenge

Todays businesses find themselves in a

situation where several disparate demands

forces them to invest in Enterprise

Application Integration (nowadays

oftentimes disguised as a SOA strategy).

Below we present a non exhaustive set of

reasons we encounter in our discussions

with businesses. The majority of businesses

have existing legacy applications, developed

in different eras using different

architectures and technologies. When new

needs evolve the businesses usually can not

afford to write them off or replace them

with new applications, because they are

mission critical. Besides the existing

applications and new integration needs for

them businesses will also need to introduce

new applications from time to time. New

applications are usually based on new

architectures, which differ significantly

from architectures used by existing legacy

applications. These new applications also

have to be integrated with existing

applications; and existing applications have

to be integrated with each other to fulfill

the information availability and accessibility

goals. Another demand is the increased

need to make inter-business integration or

“business-to-business” (B2B) integrations.

Where the actual integration project needs

to, besides handling the ordinary ordeals of

EAI, also handle stakeholders from different

businesses. To the above mentioned

ordinary ordeals for integration projects we

would like to highlight problems like the

lack or outdated documentation of legacy

applications. The fact that oftentimes only a

few staff members possess competence and

knowledge regardin´g legacy applications.

The older the application the fewer possess

knowledge. Oftentimes only a few staff

members possess knowledge regarding the

oftentimes unique infrastructure created

from the use of different technologies from

different eras being mixed in a very specific

blend based on the legacy applications once

acquired.

Communications of the IBIMA 4

We can see that integrating applications is a

difficult task, maybe even one of the most

difficult tasks facing the software

development community. After seeing

several very successful EAI projects and

noticing they all have a series of common

characteristics, we decided to document

them in this paper, calling them “key

success factors”. These findings should be of

value for a large audience including

stakeholders in ongoing or planned EAI

projects.

Methodology

We have used a straight forward approach

to our empirical studies, using action

research as defined in The SAGE handbook

of action research: Participative inquiry and

practice (Reason and Bradbury, 2008). We

believe that the following quotation

describes our research approach (Reason

and Bradbury, 2008, p. 4)

“..action research is a participatory process

concerned with developing practical

knowing in the pursuit of worthwhile human

purposes. It seeks to bring together action

and reflection, theory and practice, in

participation with others, in the pursuit of

practical solutions to issues of pressing

concerns to people...”

We have paid close attention to as many as

possible of the drawbacks in using action

research as research methodology but

would also like to state that it is very well

suited for gaining access and insight into

“real world projects” that is the foundation

for this paper. During the action research

process we used a journal approach to keep

track of insights and knowledge gained. This

journal have then been analyzed during the

writing phase this paper represents. We

have used a slightly modified version of the

original Grounded Theory approach Glaser

(1978) when analyzing the Journal.

Basically Grounded Theory can be defined

as:

“...grounded theory methods are a set of

flexible analytic guidelines that enable

researchers to focus their data collection and

to build inductive middlerange theories

through successive levels of data analysis and

conceptual development.“

The approach we have used when

analyzing the journal can very shortly be

described as a three step process: Step 1

Open coding, by analysing the terms used

in the journal, common categories or

patterns are identified. Step 2 Axial coding

identified common categories are related to

eachother in conceptual graphs. Step 3

Selective coding, main categories are

selected and the other minor categories are

related to them in conceptual graphs. This

approach to Grounded Theory is called

Multi Grounded Theory (Goldkuhl and

Cronholm, 2003).

An alternative research method we used to

a lesser extent can be called “participant

observation”, as described by Seaman

(1999, p. 5):

“...research that involves social interaction

between the researcher and informants in

the milieu of the latter, during which data

are systematically and unobtrusively

collected. The idea is to capture firsthand

behaviors and interactions that might not be

noticed otherwise. Although the name is

misleading, participant observation does not

necessarily imply that the observer is

engaged in the activity being observed, only

that the observer is visibly present and is

collecting data with the knowledge of those

being observed.”

The Key Success Factors

Using Common Canonical Formats for

Data Exchange

The integration of existing applications and

data is probably one of the more complex

and challenging tasks facing enterprise IT

organizations (Rosen, Lublinsky, Smith, and

Balcer, 2008). To be able to integrate and

exchange data between heterogenous

systems the organization needs to have an

enterprise-wide, common semantic model.

This common semantic model can be used

to identify and specify necessary data

transformations for integrating

heterogeneous applications. To setup an

enterprise common semantic data model,

the organization needs tools to enable

semantic as well as syntactical

transformations between data

5 Communications of the IBIMA

representation in existing applications and

the enterprise-wide common semantic

model.

The introduction of a canonical information

format where each information provider

and consumer is responsible for

normalizing the information into a

canonical format prior to providing the

information will enable a common semantic

data model (Patrick, 2005; Chen, 2003). This

will however introduce new requirements

on existing applications. Due to the fact that

few applications are delivered with source

code this can only be handled in the form of

adapters and wrappers doing the

transformations outside of the actual

applications. This conveys the need to

govern each adapter and wrapper as

unique artifacts leading to an added strain

on Operations staff and software

maintenance. The inclusion of an

Enterprise Service Bus (ESB) (presented in

next section) has the potential to remedy

this well known issue with EAI. The

transformations and required logic are not

separate entities but rather part of services

contained within the realm of the ESB.

The creation and usage of a canonical

information formats for heterogeneous

applications, in combination with using an

ESB centric approach to integration is one

of the identified success factors. Another

success factor is to use the eXtensible

Markup Language (XML) for defining

canonical formats. This does not imply that

all heterogenous applications need to

provide or process XML formatted data but

rather it is a requirement when creating a

canonical information format, performed

by the services deployed to the ESB. XML

consists of a set of rules for defining and

representing information as XML

documents where information structures

are indicated by explicit markup. The

markup vocabulary and the structures

specified for a particular domain create an

XML application, a formal language for

representing a common semantic data

model.Power (2005, p. 34) claims that XML

offers a flexible way to exchange

information:

“The advantage that XML offers is a flexible

standard for the exchange of information

between trading partners via the internet.”

One important note regarding an

enterprise-wide common semantic

information model is that just introducing a

homogenous way of data representation

(e.g., XML) does not imply common

semantics. The notion of “customer” can

have many different semantics,

connotations, constraints, and assumptions

in each participating system. Resolving

semantic differences between systems

proves to be a particularly difficult and

time-consuming task because it involves

significant business and technical decisions

(Hohpe and Woolf, 2003). To reach

common semantics we need to introduce

one enterprise-wide common semantic

information model defined with

homogenous canonical information

formats.

Using Open Source and Enterprise

Service Bus

There are several well defined advantages

in using open source based software, but

also a set of disadvantages (Ven et al., 2008;

Wheeler, 2007; Lakhani and Von Hippel,

2003). In our experience, an open source

approach to developing and governing an

ESB infrastructure has proven

advantageous in several ways. First, the

rapid turn-around time on feature requests

and bug fixes has encouraged early

adoption and the growth of a community

that both provides feedback and now

supports itself, in addition to several large

scale companies backing up the projects.

Second, the lack of a licensing fee

encourages the use of open source software

in organizations seeking numerous

deployments. Finally, the reuse of existing

open source components allows the

development teams to focus their efforts on

improving the aspects of the integration

solutions rather than the underlying

mechanisms that make it possible. This in

combination with the obvious promotion of

open standards usages enables for a flexible

and highly reusable architecture with a

potentially high population of stakeholders.

We have found similar experiences from

other projects with similar circumstances

like for instance Bortis (2008).

Communications of the IBIMA 6

Figure 1: An Enterprise Service Bus with Flexible and Extendable Ways of Connecting

Applications

An extension of the basic EAI strategies is

the introduction of an ESB or an ESB-centric

integration approach, using the previously

mentioned Bus approach to EAI. Using an

ESB can provide the flexibility to allow data

transformations and other services to be

“plugged” into the bus and then be reused

by any number of different services and

application components (Patrick, 2005). An

ESB is an enterprise-wide extendable

middleware infrastructure providing

virtualization and management of service

interactions, including support for the

communication, mediation, transformation,

and integration technologies required by

services (Rosen, Lublinsky, Smith, and

Balcer, 2008). This is illustrated in Figure 1

where the black boxes represent existing

and future applications, blue boxes

represent ESB connectivity adapters. The

red wavy lines indicates implemented

integrations deployed to (plugged into) the

ESB.

Using Enterprise Integration Patterns

Unlike most other engineering disciplines

IT development and software engineering is

still characterized by the lack of a precise

vocabulary (Hohpe and Easy, 2007). While

computer science has established solid

theoretical foundations, designing complex

software systems tends to be a much less

structured activity than designing buildings

or machines (Hohpe and Easy, 2007;

Pressman, 1992). Patterns constitutes one

way of handling the lack of precise

vocabulary by establishing a common

language in terms of “patterns” for common

used abstractions regarding designing and

development of software artifacts. Since

patterns are not meant to be precise

definitions and do not have to map into an

overarching meta-model, they can also be

“soft” around the edges, conveying

knowledge without necessarily being

regarded as specifications (Hohpe and Easy,

2007). Software developers tend to start

with a blank slate and are oftentimes

constrained by very few factors beyond the

language syntax. In such an environment

patterns can aid the designer as opposed to

prescribing and forcing a generic solution

based on required specifications. Design

patterns can be helpful if they represent

field-tested solutions to common design

problem. This means that for an individual

situation we only need to identify which

pattern to use and the quality of the

solution will be “guaranteed” through the

previous real life usage. Furthermore

patterns can assist IT development by

organizing design intelligence into

standardized and labeled

7 Communications of the IBIMA

recipes/descriptions. By introducing and

consistently reusing the same set of

patterns we increase our possibility to

ensure consistency in how systems are

designed and built. Patterns are however

not something to be enforced or made

mandatory when doing design but rather

flexible and optional tools to be used.

A specific type of patterns are defined as

“Enterprise Integration Patterns” these

patterns are part of the foundation for

several ESB solutions, with maybe the

Apache Camel project as the leading

example (Apache Foundation, 2012). EAI

needs to provide efficient, reliable, and

secure data exchange between multiple

enterprise applications, and enterprise

integration patterns distill a set of best

practices for accomplishing this. According

to Hohpe and Woolf (2003) the patterns are

targeted at providing solutions for the

constraints of developing integration

solutions where the limited amount of

control the integration developers typically

have over the participating applications is a

fact. Another constraint is the lack of

interoperability between “standards-

compliant” products. We have identified the

use of selected enterprise integration

patterns together with an ESB-centric

integration approach to be one of our key

success factors.

Establishing Integration Competency

Centers

According to Wikipedia the term

Integration Competency Center and its

acronym ICC was initially defined by Roy

Schulte of Gartner (Wikipedia Foundation,

2012). The ICC is an enterprise shared

service for performing systematic

application integration. Introducing an ICC

will always require an initial organizational

effort but will once its done (correctly) lead

to reduced integration costs. An ICC can

accomplish this by enforcing standards,

using standardized and well defined

processes, and driving software and data

reuse throughout all integration projects.

The result can lead to less development

effort, reduced need for extensive testing,

and lower support costs.

The introduction of an ICC will be a step in

creating an adaptive enterprise to allow the

business to rapidly change as the market

changes. The ICC does this by allowing

individual applications to be loosely coupled

so that they can change independently yet

still be tightly integrated to enable efficient

business processes (Informatica Inc.,

2005). In our empirical studies we also

identified that including lean principles into

the day to day tasks of the ICC to be another

success factor. Lean Integration can be

summarized as a set of principles similar to

Lean manufacturing and Lean software

development (Schmidt and Lyle, 2010). The

first principle eliminate waste is targeted to

the obvious task of always scrutinizing

every activity to make sure that it adds value

to the deliverable at hand and otherwise

reject the activity. The next principle is to

sustain knowledge one of the big challenges

with IT development in general and

integration in particular is the demands on

knowledge and skills it imposes on the

practitioners. This can be met by working

with elaborate individual competence

enhancement plans, defined processes and

requirements for documentation,

throughout all phases of the integration

development projects, and through a

standardized and centralized information

hub (e.g. integration wiki) to place central

documentation for easy access and usage.

The following three principles plan for

change, deliver fast and empower the team

are included in the set of processes and

methodologies we have seen incorporated

into the ICCs covered in the empirical

studies. The major part is done through the

use of Scrum as a project management

method. Scrum is an iterative, incremental

methodology for project management often

seen in agile software development.

Although Scrum was intended for

management of software development

projects, it is used to run both software

maintenance teams, and general

project/program management approaches

(Schwaber and Corporation, 2004).

In our empirical studies we have identified

Scrum as the preferred methodology to run

and manage the day to day operations of

ICCs including development and governance

Communications of the IBIMA 8

of integrations. Another key success factor

is that the ICC’s all include a standardized

set of tools for enhancing both quality and

speed in delivering integrations. These tools

include support for thorough testing,

continuos integration, intelligent handling

of software builds and source code

versioning. One interesting note is that the

entire tool suites is built with pure open

source products.

Conclusions

EAI is a challenging and crucial task that the

majority of todays businesses needs to

handle. One could probably claim that the

level of success can, at least for some

businesses, be measured in conjunction

with their success in EAI. We have

participated in several successful EAI

projects for over a two year period and have

during this time identified a set of common

characteristics. These common

characteristics are:

1. Using Common Canonical formats for data

exchange. Through the use of canonical

formats and a uniform way of defining

them (XML) we create the basis for

enabling common semantics within a

business. This is crucial for successful

EAI.

2. Using open source and ESB for EAI

infrastructure. The use of open source

have several benefits beside the obvious

of no licensing costs. We have also found

that an ESB-centric approach to EAI

provides several of the needed

characteristics for creating maintainable

EAI.

3. Using enterprise integration patterns. In

all studied EAI projects a common

denominator is the use of Enterprise

Integration patterns. This is even

observable in the inner workings of

several open source based ESB solutions

where several enterprise integration

patterns are included as major parts of

the ESB basic functionality.

4. Establishing ICCs, an ICC provides the

benefits of increased quality through

controlled processes and standardized

tooling operated by competent and

experienced staff using best practices. We

also notice cost savings through

reusability, faster development and easier

maintenance.

References

Apache Foundation (2012). "Apache Camel,"

Wikipedia. [Online], [Retrieved March 4,

2012], http://camel.apache.org/.

Bortis, G. (2008). "Experiences with Mirth:

An Open Source Health Care Integration

Engine," Proceedings of the 30th

International Conference on Software

Engineering, ACM, 649–652.

Brooks Jr, F. P. (1987). "No Silver Bullet

Essence and Accidents of Software

Engineering," Computer, 20 (4), 10–19.

Chen, M. (2003). "Factors Affecting the

Adoption and Diffusion of XML and Web

Services Standards for E-Business Systems,"

International Journal of Human-Computer

Studies, 58 (3), 259–279.

Christiansson, M.- T. & Christiansson, B.

(2006). Mötet Mellan Process Och

Komponent: Mot Ett Ramverk för En

Verksamhetsnära Kravspecifikation Vid

Anskaffning Av Komponentbaserade

Informationssystem, Institutionen för

Datavetenskap, Linköpings Universitet,

Doctoral Thesis, in Swedish.

Cummins, F. A. (2002). Enterprise

Integration: An Architecture for Enterprise

Application and Systems Integration, John

Wiley & Sons Inc., New York.

Glaser, B. G. (1978). Theoretical Sensitivity:

Advances in the Methodology of Grounded

Theory, Sociology Press, Volume 2.

Goel, A. (2006). "Enterprise Integration EAI

vs. SOA vs. ESB," Infosys Technologies White

Paper.

Goldkuhl, G. & Cronholm, S. (2003). Multi-

Grounded Theory Adding Theoretical

Grounding to Grounded Theory, 2nd

European Conference on Research Methods

in Business.

9 Communications of the IBIMA

Gu, Q. & Lago, P. (2009). "Exploring Service-

Oriented System Engineering Challenges: A

Systematic Literature Review," Service

Oriented Computing and Applications, 3 (3),

171–188.

Hohpe, G. & Easy, C. (2007). "SOA Patterns–

New Insights or Recycled Knowledge,"

Enterpise Integration Patterns. [Retrieved

March 4, 2012]

http://www.eaipatterns.com/docs/SoaPatt

erns.pdf.

Hohpe, G. & Woolf, B. (2003). Enterprise

Integration Patterns: Designing, Building,

and Deploying Messaging Solutions,

Pearson Education, Inc.

Informatica Inc., (2005). 'Information

Competency Center Seize the Integration

Advantage,' Informatica Corporation, White

Paper.

Jotham, G. & Toivanen, A. (2010).

"Integration Competency Center," Frends

Technology, White Paper.

Lakhani, K. R. & von Hippel, E. (2003). "How

Open Source Software Works: “free” user-

to-user assistance," Research Policy, 32 (6),

923–943.

Land, R. & Crnkovic, I. (2004). "Existing

Approaches to Software Integration – And a

Challenge for the Future," Proceedings of

Software Engineering Research and Practice

in Sweden (SERPS), Linkoping University,

Sweden, 4, October 2004.

Leymann, F. (2005). "The (Service) Bus:

Services Penetrate Everyday Life," Service-

Oriented Computing-ICSOC 2005, 12–20.

Papazoglou, M. P., Traverso, P., Dustdar, S. &

Leymann, F. (2007). "Service-Oriented

Computing: State of the Art and Research

Challenges," Computer, 40 (11), 38–45.

Patrick, P. (2005). "Impact of SOA on

Enterprise Information Architectures,"

Proceedings of the 2005 ACM SIGMOD

International Conference on Management

of Data, ACM, 844–848.

Power, D. (2005). "Supply Chain

Management Integration and

Implementation: A Literature Review,"

Supply Chain Management: An International

Journal, 10 (4), 252–263.

Pressman, R. (1992). 'Software

Engineering-A Practitioner's Approach,'

Mcgraw Hill.

Reason, P. & Bradbury, H. (2008). The SAGE

Handbook of Action Research: Participative

Inquiry and Practice, Sage Publications Ltd.

Rosen, M., Lublinsky, B., Smith, K. T. &

Balcer, M. J. (2008). Applied SOA: Service-

Oriented Architecture and Design

Strategies, Wiley Publishing, Inc.

Schmidt, J. (2009). "Lean Integration,"

Infortmatica Corporation, White Paper.

Schmidt, J. G. & Lyle, D. (2010). Lean

Integration an Integration Factory

Approach to Business Agility, Addison-

Wesley Professional.

Schwaber, K. & Corporation, M. (2004).

"Agile Project Management With Scrum,"

Microsoft Press, Redmond.

Seaman, C. B. (1999). "Qualitative Methods

in Empirical Studies of Software

Engineering," Software Engineering, IEEE

Transactions on, 25 (4), 557–572.

Stelzer, D. (2010). "Enterprise Architecture

Principles: Literature Review and Research

Directions," Service-Oriented Computing.

ICSOC/Servicewave 2009 Workshops, 6275,

12–21.

Ven, K., Verelst, I. & Mannaert, H. (2008).

"Should You Adopt Open Source Software?,"

Software, IEEE, 25 (3), 54–59.

Wheeler, D. (2007). "Why Open Source

Software / Free Software (OSS/FS, FLOSS,

or FOSS)? Look at the Numbers!," [Online],

[Retrieved March 4, 2012],

http://www.dwheeler.com/oss_fs_why.html.

Wikipedia Foundation (2012). "Integration

Competency Center," [Online], [Retrieved

March 4, 2012],

http://en.wikipedia.org/wiki/Integration_C

ompetency_Center

