
IBIMA Publishing

IBIMA Business Review

http://www.ibimapublishing.com/journals/IBIMABR/ibimabr.html

Vol. 2011 (2011), Article ID 685309, 9 pages

DOI: 10.5171/2011.685309

Copyright © 2011 Diego Bruno. This is an open access article distributed under the Creative Commons

Attribution License unported 3.0, which permits unrestricted use, distribution, and reproduction in any

medium, provided that original work is properly cited. Contact author: Diego Bruno, e–mail:

brndgi@ymail.com

The BONSAI Approach

Applied to Small-Medium Enterprises

Diego Bruno

Torino, Italy

Abstract

In this paper, we describe the BONSAI approach and how Small-Medium Enterprises can take

advantage of it. BONSAI consists of a set of behaviors, best-practices and guidelines which help

professionals to develop better software. Conceived as an iterative and incremental process, it

helps to integrate the software development process with the upper processes of the enterprise

taking advantage of Business Process Management techniques. It brings to Small-Medium

Enterprises the capability to support continuous changes helping them to mitigate and assess the

risks involved.

Keywords: Agile, Business Process Management, Small and Medium Enterprises

__

Introduction

Today, a large number of companies from

different commodity sectors are developing

software. From the “one-man-band”

company to the larger international

manufacturer, they develop very different

software and very differently in terms of

markets, products, technologies, and of

course outcomes.

Small and Medium Enterprises (SMEs) are a

group of those. Following a commonly

accepted definition, an SME is a company

with a number of employees ranging from 1

to 500 people. Compared to Large

Enterprises (LEs) where people are several

thousands, it seems to be just a bonsai

compared to an oak.

But the definition of the above mentioned

SME is not developing very accurate for

companies in which software is part of the

main business. To be more specific, let’s

consider software projects as a meter: we

consider an SME when the average of in-

house software projects developed, or in

progress to be developed, during one year

ranges from 1 to 10 software projects.

Also, SMEs have several key differentiators

from LEs. Following the Ibrahim and

Goodwin study (1986), “Small businesses are

known to suffer from resource poverty.

Resource poverty is characterized by

immense constraints on financial resources,

a lack of human resource expertise, and a

short range management perspective

imposed by a volatile competitive

environment.”. In this sense, SMEs have

restricted investment capabilities caused by

financial limitations: usually, SMEs cannot

take advantage of economies of scale,

incurring high costs.

Compared to LEs, we should notice that SMEs

have more dynamism and flexibility: they are

more responsive to changes and new ideas,

especially because the hierarchical structure

is shallow. But specialized staff are lacking in

SMEs: they can rarely afford a specialist for

each enterprise area. They don’t usually

implement company-level Development

Methodologies and Formal Processes for the

IBIMA Business Review 2

development of software, mainly because of a

lack of resources in terms of budget, people,

knowledge, internal communication, and

they can hardly afford such investment. As a

consequence, every Business Unit usually

adopted its own way to develop software.

It should also be noticed that in the last 10

years they have followed the global trend to

offshore the production activities, and in the

last 5 years they have started to offshore

software development to both offshore

companies and overseas subsidiaries.

Looking at these differences, it’s interesting

to realize that SMEs seem to have a profitable

environment for improvement of software

development, but often they don't have the

necessary resources to perform the change.

The main reason is that improvement is a

cost, often not affordable for SMEs. Relevant

costs include: reorganization costs,

education, scouting and selection of

development methodologies, development

methodology validation (including pilot

projects), process implementation, tool

licenses and maintenance. This is a key

differentiator from LEs, which can usually

afford these costs without interfering with

the main business of the company.

But in which sense is it useful to compare an

SME with an LE? Which Software

Development Processes can be adopted by

SMEs or at least inspire them? Which ones

should be modified and optimized in order to

fit SMEs requirements? Finally, what can

BONSAI do about developing better software

projects?

Being based on the experience of SMEs in the

past 10 years, the BONSAI approach tries to

answer those questions.

The Role of Business Process Management

Business Process Management is a discipline

widely adopted by LEs. To describe how to

improve enterprise software processes,

BONSAI makes large use of the Business

Process Management approach (BPM).

Following the Di Leva and Laguzzi (2008)

definition, “Business Process Management is

a structured approach, founded on a group of

activities required to design, optimize,

monitor and integrate enterprise processes,

in order to create a process aiming to make

the enterprise business efficient and

effective.”

In the sphere of Business Process

Management, we decided to represent

enterprise processes as aggregation of

Business Building Blocks (BBBs). Following

the BETADE project definition (Verbraeck

and Dahanayake, 2002), “The building blocks

are a self-contained (nearly-independent),

interoperable (independent of underlying

technology), reusable and replaceable unit,

encapsulating its internal structure and

providing useful services or functionality to

its environment through precisely defined

interfaces. A building block may be

customized in order to match the specific

requirements of the environment in which it

is used (plugged).” In other words, BBBs are

independent, interoperable (that is

independent from underlying technology),

reusable and interchangeable.

Additionally, BBBs have an internal

structure, they supply services or functions

through an interface, they are customizable

and adaptable to every specific need, they

embrace the concepts of inheritance and

encapsulation of their internal structure.

It should also be noted that BPM and

especially BBB concepts are very similar to

Object Oriented concepts, well-known in

Object Oriented Programming Languages like

ADA, C++, etc.

Definition of BONSAI

So far, BONSAI is not a Development

Methodology, like waterfall, V-model, RUP,

etc. It aims to define a set of guidelines which

helps professionals to develop better

software. It is a collection of approaches,

best-practices and guidelines. Whereas it has

his roots in SMEs, it is not aimed to be

necessarily applied by SMEs only.

3 IBIMA Business Review

BONSAI stands for: Business-Oriented

Normalized Synergic Adaptive Iteration.

The term Business-Oriented refers to a

particular attention of the development

process towards the whole enterprise

business. In this sense, the software

development process has to be constantly

compared against the business needs and

operations of the company, and software

development processes are BBBs of a more

complex Business Process, involving the

whole Enterprise.

The term Normalized refers to both

simplification and optimization of processes.

Business Processes coming form LEs can

hardly be successfully applied on SME, they

need first to be normalized. Some

normalization techniques will be described

later.

The term Synergic encompasses several

aspects of Software Development, including

communication, people organization and

personal motivation. A collection of

guidelines aiming to improve synergy will be

provided later.

The term Adaptive encompasses two aspects

of Software Development. The first is about

Enterprise Organization, and how

organization influences Software

Development. Later, it will be discussed how

the Development Process can adhere to the

implicit and explicit Business Processes of

the organization. The second is about how to

manage changes, that is how a process is able

to adapt to variations from the initial inputs.

Changes include rescheduling, specification

changes, business plan changes. Some

techniques to support changes inside

processes will be discussed later.

The term Iteration underlines the iterative

approach (versus waterfall approach) of

BONSAI. Iteration is the base of many

software development methodologies. We

will refer especially to Iteration as defined by

AGILE Modeling (Ambler, 2002). The BONSAI

iteration, implemented as a BBB, will be

detailed in the next section.

Iteration

Iteration is meant as a repetition of a

particular task or activity with the goal of

improving its main work. This method is

often compared to the waterfall model, which

is a sequential software development

process, where progress flows downwards.

Since SMEs have financial constraints,

iteration is usually the preferred

methodology. As a further consequence, for

complex projects, the waterfall approach is

most likely to fail for SMEs.

The core of the BONSAI approach is

represented by a specific work unit,

conceived as a BBB, called the Core Building

Block (CBB). CBB represents the formal

iteration of the software development

process.

To understand how that iteration works, and

how CBB behaves, we first describe the

actors involved in the iteration. They are: the

Developer Core Team, the Software Test

Team (which includes both the Module Test

Engineer and the System Test Engineer), the

Tool Support Team, the Integration Team

and the Project Management.

The Developer Core Team represents the

group of people developing a specific feature.

It is usually composed of at least Senior

Engineer and several Junior Engineers. It is

definitely the productive part of CBB, since

they develop the more valuable working

product of the CBB: the software needed to

implement a given feature of the product. As

Mills (1971) underlines, the Senior Engineer

(or Chief Programmer) is seen as a surgeon.

The Software Test Team, Tool Support Team

and Integration Team have the role of

supporting the Developer Core Team to

develop their work product: the Software

Test Team develops and executes tests at

software modules and/or at system level to

IBIMA Business Review 4

assure that the quality of the work product is

met; the Tool Support Team develops and

maintains the necessary tools for

development, such as the Configuration

Management System, Version Control, Bug

Tracking System, Knowledge System, tool-

chains, Automatic Compilation System, etc;

the Integration Team is responsible for

putting every working product together,

checking that the desired behavior of the

system is met, and correcting, or asking for

correction, of unwanted effects.

Project Management is finally the glue

between each component. It supports each

team, in terms of communication, scheduling,

people management, synergy improvement,

but it is also the interface between the

Enterprise and the CBB.

Let’s now have a look in broad terms at the

BONSAI iteration. First, let’s define the inputs

and the outputs of the iteration. Inputs are

represented by product requirements,

coming from stakeholders. Outputs are

represented by specific work products:

prototype software, demo software, software

release. The BONSAI iteration is composed of

five sub-iterations.

The first sub- iteration is represented by

requirement validation: stakeholders

create/modify a Business Plan, then,

elaborate requirements and priorities; then,

the CBB validates requirements and

eventually asks stakeholders for a refinement

of requirements.

The second sub-iteration is about estimate

validation and plan elaboration: the CBB

creates cost and effort estimates; then

stakeholders approve or disapprove, then

they modify the list of requirements and

priorities accordingly; finally the CBB creates

a task list and a plan based on final

requirements and priorities. If a task list is

already available, it is refined based on

previous interactions.

The third sub-iteration is about module

development: for each task identified in the

second sub-iteration, the software is

developed; then software is validated by

Module Test Engineers; finally defects are

corrected by the Development Core Team.

The fourth sub-iteration is about integration:

Integration Engineers integrate the modules;

then the defects are fixed by the

Development Core Team.

The fifth sub-iteration is about the system

test: System Test Engineers validate the

integrated software; then the defects are

fixed by the Development Core Team.

The output of the iteration is then validated

by stakeholders. Then, iteration starts again

from sub-iteration 1.

Business-Oriented

For Business-Oriented approach, we mean

that BONSAI is devoted to supporting the

enterprise business. For that reason, the

BONSAI CBB cannot be estranged from the

upper enterprise processes.

In fact, each CBB iteration has direct and

indirect impacts on several aspects of the

enterprise business.

The first impact is about the level of

confidence and knowledge of the project

earned at each iteration. An estimate at the

beginning of the project can be refined, and

so the efforts and the delivery dates can

change: this could impact especially on the

original business plan.

Another impact concerns the change of team

engineers, turnover, and overall high

workload of engineers. It can change the

scheduling and can impact stakeholders’

expectations.

The Quality acceptance department is

impacted since new software is ready to be

tested at the end of each iteration. The Sales

department and customer support are also

impacted since a new release is ready to be

sold, and a new release on the market must

5 IBIMA Business Review

be supported. Production and the supply

chain can be impacted since a new software

is now ready to be finalized (e.g. burnt on a

CD) and shipped to the customer.

Additionally, the enterprise itself can

embrace changes that impact on software

development: change or addition of new

requirements from Marketing, changes

coming from the field (e.g. low customer

satisfaction, which can jeopardize the future

business, can question the quality of the

software produced, and so an optimization of

the software development process can be

needed), and changes in the structure of the

company (e.g. department splitting or

department merging).

To face all those impacts, an enterprise-

global approach is needed. In this sense, CBB

should be conceived as a single BBB of many

other enterprise business processes.

According to the BONSAI approach, all

involved enterprise business processes

should be orchestrated and integrated with

CBB, at each iteration.

Since SMEs are usually more dynamic than

LEs, and most LE Departments are simply not

present or merged, SMEs are a good

workbench to implement such integration.

Normalization Techniques

Starting from LEs’ experience in the creation

and maintenance of business processes,

BONSAI suggests adopting normalized

versions of relevant LEs’ Business Processes.

In the BONSAI approach, normalized is

intended as both simplified and optimized.

Each process in SMEs has to be simple, easy

to implement and maintain, because of the

dynamic nature of SMEs. But also, LEs’

business processes don’t fit SMEs’ needs

because they require company structure and

costs that a SME can hardly afford.

The first normalization technique is about

reduction. If we consider a complex LE

Business Process, and we try to fit it into

SMEs’ reality, most probably we need to

apply such a technique. Reduction means

that, where needed, a BBB should be

eliminated from the business process. Let’s

take for example an enterprise process for

the development of a product. Before the

development starts, LEs usually spend effort

and resources for prototyping. Since SMEs

don’t always have such resources,

prototyping is cut off, and the development

starts immediately after requirement

specification.

The next normalization technique is about

addition. It means that, where needed, a BBB

should be introduced to the business process.

Let’s take for example a bug tracking system,

containing all the defects detected on a

software release in several phases of

development: module test, integration,

system test. Let’s suppose that the Customer

Support Department has access to the same

bug tracking system, helping it to find the

solution to end-user problems. The first

remark is that the whole tracking system

does not completely suit the Customer

Support’s needs, since it contains a lot of

useless knowledge regarding system

integration and module tests. Addition in this

case covers the creation of a new BBB,

responsible for filtering and isolating the

defects found by the System Test, and

currently not solved. In this case the Business

Process has been optimized by the addition

of a new process.

The next normalization technique is about

workload decrease. In this case, to remove

the bottleneck we identify the process

causing it, and we change it. One or more

blocks can optionally be added in order to

mitigate change. Let’s make an example. It

has been detected in a software group that

integration takes too much time compared to

estimates. The reason has been identified in

the lack of enough people to perform

integration. The company is willing to hire

new people, but it will take time, and the new

people will be on board, properly skilled, far

away from the release date.

IBIMA Business Review 6

Workload decrease can help in this way: we

need first to decrease the Integration Team

workload. We can accomplish this by

changing the integration procedures: defects

and change requests have to be affordably

grouped, and integrated as a whole. In this

way, the number of software builds

decreases considerably. Of course, this

approach can reduce control on the

integrated code. In order to mitigate the risk,

a code review activity is added right after

development, with the aim of increasing code

quality. In conclusion, integration has been

simplified reducing the number of builds, and

the process has been optimized introducing

code review activity.

The next normalization technique, more

intrusive than workload decrease, is about

load rebalancing. Usually, when a bottleneck

is identified in a process, there are two

choices to solve it: add new people to

increase the production level, or change the

process itself. Workload rebalancing is all

about process change: one or more processes

are redefined in order to remove the

bottleneck.

Let’s make an example: a Core Development

Team shrinks. The workload for each

developer of the team increases, and as a

consequence the Module Test Engineer

workload decreases. To rebalance the

workload, the Module Test Engineer, after

completing the Module Test, is asked to

proceed with the System Test right after the

module integration. The Integration

engineer, who has became the most

experienced engineer on that module, can

support the other engineers to understand

how it is working. In conclusion,

workload rebalancing has impacted on the

processes of the Core Development Team

and the Module Test to fit the new structure

of the CBB.

The next normalization technique is about

project control. Software Project complexity

can be measured with several parameters:

costs, lines of codes, number of modules,

number of people involved, etc. Small

software projects are usually easier to

develop than complex projects (additionally,

a system composed by a single device is far

less complex than a system composed of

several interactive devices). The project

control techniques aim to keep projects

small, adopting a divide et impera approach:

large projects can always be split in several

smaller projects.

As a final consideration, we have seen that

normalization can introduce risks. For this

reason, a risk assessment and a mitigation

plan should be considered when normalizing.

Synergy Improvement

Synergy is strictly dependent on

communication. Synergy without

communication is very hard to obtain. That’s

the reason why most of the best practices to

increase synergy are focused on

communication improvement.

Communication improvements can be

grouped in two categories, both

complementary: tools and team attitude.

A lot of different tools can be used to improve

communication in a software development

group: versioning control, bug tracking

system, shared project planning tools, wikis,

forums, etc. All of them require first an effort

to be selected, effort for customization, effort

to teach to the team how to use it, and

maintenance of the tools.

But tools are not enough, since we need

people using them effectively. Actually any

one of us make great use of a tool if we

believe that can be useful. If not, it will be just

another annoying task to be done. It should

be noted also that “Individual and

Interactions are more important than

process and tools” (Agile Alliance 2001).

That’s the reason why it is necessary to build

up a communication and collaboration

attitude around the tools. Such an attitude is

not always easy to build, since it strictly

depends on personal and cultural

7 IBIMA Business Review

components. It is common understanding

that a tool is welcomed when it helps people

to do their jobs better and more quickly. So

the tools, and the eventual customizations,

should be focused on providing advantages

to all the users involved.

The team attitude is also directly affected by

project outcomes. To simplify, when the

project is going badly, blame is on everyone,

but when it is going fine, the merit should be

upon everyone. It’s especially important that

rewards will be recognized by the enterprise

itself, in order to keep personal motivation

high. Meritocracy is the model that best helps

to promote attitude.

A big communication problem is distance,

especially when project teams are located far

away. In this case, tools and proper project

control make the difference. Also, as

suggested by DeMarco and Hruschka et al.

(2008), face-to-face contact is a good weapon

to increase the team attitude.

Attitude for good communication is also

strictly related to work conditions. When

people are overloaded by day-to-day work,

the time for communication is short.

Communication requires time, and this time

should be taken into account in each

development plan.

Another relevant communication skill is the

capability to share one’s own knowledge.

This can be a good accelerator in several

situations. Let’s suppose that a developer is

making a hard piece of code. He has some

doubts regarding implementation, or worse

he does not know how to solve it. But he

knows that other guys in the team have

solved similar problems in the past, or they

are masters of a programming language and

surely they can give good advice. That

sharing climate can help the developer to do

a better job. It can be pretty obvious in a

small team, working in the same office, but it

is not so obvious when teams are located

around the world. In this case the Project

Manager has the role to spread around teams

that sharing climate, assuring that this kind

of code review activity will be brought off

naturally by every engineer.

Consensus is also very important among the

team. A widely used technique for improving

consensus is Wideband Delphi (McConnel,

2006), used in the estimation process: each

component of the team creates an estimate

anonymously, then traces a plot representing

the estimates on a timeline. A discussion

follows on the average estimate. When

decided, each component votes anonymously

for approval or not: if any of the components

don’t approve, the discussion starts again

and the process is repeated until a single-

point estimate is approved. This technique,

used especially in early-in-the-project

estimates, has the side-effect increasing

considerably the consensus among the team.

To improve synergy in the Core Development

Team, the Project Manager has a very

important role. As described by DeMarco and

Hruschka et al. (2008), a project manager

should be like a nanny, taking care that all

engineers have the facilities needed to do

their job, encouraging engineers to discuss

new ideas and scheduling time for it,

protecting the team like a wall from the rest

of the organization, trusting them,

supporting them and listening to them.

Adaptation

Following Conway’s Law (1968), “the

organization influences the structure of the

code and the architecture”. That’s the reason

why each Software Development Process

should adhere to the organization’s implicit

and explicit Business Processes.

Implicit Business Processes are those

processes that are not specified and

documented, but they are executed and

recognized by everyone. Most Business

Processes in SMEs belongs to that category.

Explicit Business Processes are those

processes that are specified and documented.

In both cases, people are taking

responsibility for a part of the process. Let’s

take for example a company selling software

IBIMA Business Review 8

for Android-powered devices, based on

customer’s detailed requirements. A

customer is asking for a turnkey customized

VoIP Phone software. Once the requirements

are decided, an offer is produced by the

company and when accepted, the

development begins. In that case, it probably

makes no sense to have an integration team,

since the application is composed by just few

components (VoIP stack, application) and

requirements are fixed, since we are talking

about a turnkey project. And probably it

makes more sense to have a prototyping

team, able to develop demos to show to

potential customers.

Another example is about outsourced

projects. Let’s take for example a company

developing telecom systems, and part of the

system is outsourced to consulting

companies. In this case, integration and short

iterations are necessary to guarantee that the

system is developed properly.

Another Adaptive aspect is about how

processes are able to react to changes. We

will cover two types of changes: estimation

changes and requirement changes.

At the end of each iteration, the team

improves its knowledge of the system under

development. He knows how much it took to

complete the iteration, if the initial estimate

was good or not, which issues were faced,

etc. All of this knowledge can be used to

refine the initial estimate as suggested by

McConnel (2006). McConnel’s reasoning is

based on Cone of Uncertainty: a plot where

horizontal axis contains common project

milestones, and vertical axis contains the

degree of error found on estimates. The

resulting plot is a cone, narrowing from left

to right. This demonstrates how uncertainty

is reduced milestone after milestone.

Additionally, at the end of each iteration the

original requirements can change. This can

be for several reasons: Marketing, watching

at a software demo, realizing that something

should be changed to fit the requirements

better. Or the end-user asked for other high-

priority features, or the market itself

requires that a new important feature be

present in the product. In any case, after new

requirements have been discussed, a

rescheduling is also needed, and a

normalization process can be required

additionally.

Conclusions

The BONSAI approach for the Software

Development Process brings several

advantages to the Enterprise. Since it is

based on a single iterative approach, which

involves most of the Enterprise, it can help to

anticipate changes, before the product is

completely developed giving a major

competitive advantage to the Enterprise. The

BBBs implemented in the processes can be

reused and inherited (e.g. for hardware

development, quality assurance, etc.), easing

the implementation of further processes. The

synergy between different teams is improved

giving a competitive advantage to the

Enterprise. Normalization techniques can

also help to optimize an existing process

especially processes coming from LEs: this

allows advantage to be taken from LE’s

experiences. Adaptation techniques can be

used for the definition of processes able to

support continuous changes, these are very

common in dynamic companies like SMEs.

Costs are kept low, since no specialized

engineers are required to adopt BONSAI. Risk

assessment and mitigation plans can be used

to understand the risk involved in each

process change.

All of these advantages have the effect of

improving the competition effectiveness of

the Enterprise which can, with BONSAI, move

the enterprise business towards a process-

oriented and synergic approach.

References

Agile Alliance (2001). Manifesto for Agile

Software Development. [Retrieved on

September 7, 2010], www.agilealliance.org.

Ambler, S. W. (2002). Agile Modeling, Wiley

Computer Publishing, New York.

9 IBIMA Business Review

Conway, M. E. (1968). “How do Committees

Invent?,” Datamation magazine, April 1968.

DeMarco, T., Hruschka, P., Lister, T.,

McMenamin, S., Robertson, J. & Robertson, S.,

(2008). Adrenaline Junkies and Template

Zombies, Dorset House Publishing, New York.

Di Leva, A. & Laguzzi, P. (2008). “I Business

Building Blocks: dalla modellazione

all’esecuzione del processo,” Proceedings of

V Conference of the Italian Chapter of AIS

(itAIS 2008), ISBN:978-88-6105-076-1, 13-

14 December 2008, Paris, France

Ibrahim, A. B & Goodwin, J. R. (1986).

“Perceived Causes of Success in Small

Business,” American Journal of Small Business.

McConnel, S. (2006). Software Estimation.

First edition. Microsoft Press.

Mills, H. (1971). “Chief Programmer Teams,

Principles, and Procedures,” IBM Federal

Systems Division Report FSC 71-5108.

Verbraeck, A. and Dahanayake, A. (2002).

"Building Blocks for Effective Telematics

Application Development and Evaluation,"

Delft University of Technology, Faculty of

Technology

