Case Report

Gnathostomiasis in a Dog in Lusaka Zambia

Alfred Chikweto¹, Muhammad.I Bhaiyat², Saul Mofya³ and Ravindra.N Sharma⁴

¹,²,⁴Pathobiology Academic Program, School of Veterinary Medicine, St. George's University, Grenada
³Department of Veterinary Sciences and Public Health, Fort Valley State University, Fort Valley, Georgia, USA

Correspondence should be addressed to: Alfred Chikweto; achikweto@sgu.edu

Received date: 4 April 2014; Accepted date: 23 June 2014; Published date: 22 January 2015

Abstract

A 6-month-old male mongrel dog was presented with clinical signs of vomiting, anorexia, weakness and chronic weight loss. At necropsy, an ulcerated granuloma containing numerous nematodes was found in the fundus of the stomach. Several worms were also noted in the gastric lumen. Histologically, there was a granulomatous gastritis with intralesional nematodes characteristic of Gnathostoma spinigerum. This is the first report of gnathostomiasis in a dog in Zambia.

Keywords: Gnathostoma spinigerum, dog, Zambia.

Introduction

Gnathostoma spinigerum is a nematode parasite mostly found in the stomach wall of canine and feline definitive hosts (Soulsby, 1982). When eggs passed in feces reach fresh water, first-stage larvae are released which are ingested by small copepods (first intermediate hosts) and develop to second-stage larvae. When the infected copepods are ingested by paratenic hosts like fishes, amphibians, and birds, the larvae develop further to become third-stage larvae which infect the definitive hosts. Third-stage larvae migrate further into the definitive host tissue and finally develop into adults in the stomach wall to complete their life cycle, thereby inciting a localized/focal granulomatous gastritis.

Gnathostomiasis is an emerging food borne zoonotic parasitic disease endemic to Southeast Asia including Thailand, Vietnam, Philippines, Malaysia, Myanmar, Bangladesh, Cambodia, Laos and Indonesia and has been widely documented in Japan, China and Mexico [De Gorgolas et al., 2003]. Outside the endemic areas, gnathostomiasis has recently
been reported in Zambia, Tanzania and Botswana, often in tourists who had consumed raw marinated or undercooked fresh water fish (Hale et al., 2003; Herman et al., 2009; McCarthy and Moore, 2000)

Gnathostoma spp was first reported in the stomach wall of a tiger from a London Zoo in 1836 (Herman and Chiodin, 2009). In domestic cats and dogs, reports of gnathostomiasis are few. Based on a coprologic survey, Arafa et al (1978) reported a prevalence of 0.7% in cats in Cairo, Egypt. Case reports for gnathostomiasis in a cat from the USA and 3 cats from Australia have also been documented. (Kirkpatrick et al., 1987; Trueman and Ferris, 1977). The parasite has extensively been reported in dogs, cats and humans in Thailand (Rojekittikhun, 2002). Reported is a case of gnathostomiasis in a dog from a tropical southern African country of Zambia.

Case Report

A 6 month- old male mongrel dog was presented to the Small Animal Clinic at the School of Veterinary Medicine, University of Zambia with a history of anorexia, vomiting, weakness and chronic weight loss. The usual diet of the dog included kitchen scraps and occasionally fish. As the dog died due to a combination of anemia and gastritis, necropsy was performed. The dog was emaciated and there was generalized pallor. Gross lesions seen in the gastric fundus consisted of an ulcerated, 3cm, diameter granuloma containing numerous nematodes. Several worms were also noted in the lumen of the stomach.

Tissues from the stomach were fixed in 10% formalin, embedded in paraffin, sectioned and stained with hematoxylin and eosin. Histopathology revealed granulomatous gastritis characterized by the infiltration of moderate numbers of macrophages and lymphocytes, few eosinophils and a thick band of fibrous connective tissue around the granuloma which were restricted to the tunica muscularis of the stomach. Parasitological evaluation revealed that nematodes were 1-2cm long with a head bulb and cuticle spines. Histologically, these parasites had nematode characteristics, including the presence of a body cavity, thin outer wall, cuticle spines, coelomyarian muscles with lateral cords, prominent cuticle ornamentations in form of spines, intestine and gonad. (Fig.1)
Discussion

This report is the first in a definitive host from Zambia. Since the diet of this dog included fish, it is likely that the dog contracted this parasitosis during one of the feeding episodes; most probably raw or undercooked fish. In Zambia, the host range of infestation by *G. spinigerum* is not known. A recent coprological survey in dogs in Lusaka did not reveal any prevalence of this parasite, indicating that the parasite is rare (Bwalya et al., 2011). However, this parasite is present in Zambia and people should be warned about dangers of consuming raw or undercooked fresh water fish. In addition, dog owners should be encouraged to regularly deworm their pets using fenbendazole and ivermectin (Bowman, 1999). Further research to investigate the prevalence of *G. spinigerum* larvae in fresh water fish in Zambia is recommended.

References

4. “Prevalence of canine gastrointestinal helminths in urban Lusaka and rural Katete Districts of Zambia,” *Preventive Veterinary Medicine*, 100 (3–4) 252-255.

