

Journal of Cloud Computing
Vol. 2014 (2014), Article ID 545850, 39 minipages.

DOI:10.5171/2014.545850

www.ibimapublishing.com

Copyright © 2014. Christian Moss. Distributed under Creative

Commons CC-BY 3.0

Research Article

Integrating Cloud Computing and Mobile Applications:

A Comparative Study Based on Icloud and Sanscode

Author

Christian Moss

Cyberdesign Works, Sydney, Australia

Received date: 5 September 2013

Accepted date: 27 January 2014

Published date: 31 December 2014

Cite this Article as: Christian Moss (2014), "Integrating Cloud

Computing and Mobile Applications:

A Comparative Study Based on Icloud and Sanscode ", Journal of

Cloud Computing , Vol. 2014 (2014), Article ID 545850, DOI:

10.5171/2014.545850

Abstract

Cloud computing is widely used to share and synchronize data

between mobile devices such as smartphones and tablets. iCloud

is Apple's cloud system for use with iOS and Mac OS devices and

applications. However, a major limitation of iCloud is that it is not

compatible with other mobile platforms such as Google's Android

and Windows Mobile. This paper discusses Sanscode, a cross

platform cloud computing system developed by Cyberdesign

Works to address the underlying interoperability problems. We

note that Sanscode could provide a practical alternative solution

which supports much of iCloud's functionality with several

additional features.

Keywords: Cloud Computing, Data storage, iCloud, iOS, Mobile

Devices

Introduction

Data can no longer be seen to be in any one place at any one time,

nor can it be seen as belonging to any one person. The 'Cloud' as

it is commonly known, can be considered as a collective system of

data storage with network connections that can be accessed by

any device utilizing a standard Internet connection. Although we

have witnessed an increase in the popularity of cloud computing

systems in recent years, many argue that the technologies

underpinning such systems have existed since the birth of the

web. In fact, the Cloud is often akin to the web which has become

more versatile and ubiquitous as communication technologies

continue to improve. Furthermore, one can argue that the

syncing and storing of data between devices in a cloud system

(also known as ‘cloud storage’) should not be classified as cloud

computing, but rather ‘distributed storage’, as true cloud

computing implies some parallel/distributed data processing

across large-scale networks. Nevertheless, this paper will use the

term cloud to refer to the data storage aspect of cloud computing

rather than the latter (more general) data processing

implementation.

This paper is motivated by the potential impacts of cloud

computing on mobile devices. In particular, it investigates the

practical limitations of Apple's iCloud system (Apple Inc. 2013) in

the context of mobile application development. It describes how

some of the shortcomings of iCloud could be overcome using

Sanscode - an interoperable cloud based data repository solution

developed for mobile devices and web-based content

management systems. To facilitate its comparison with iCloud, a

metric was used with criteria selected to evaluate mobile

applications based on the following set of minimal/client

requirements:

• The system should work over multiple devices and

across different OS platforms e.g. iOS/Android/Windows

Mobile etc.

• The system should be capable of handling the syncing of

data in the background.

• The system should be automated thus requiring minimal

input from the user; c.f. usability.

As with most cloud based systems, the system should be scalable

and able to handle a large number of devices.

The rest of the paper is organised as follows. Section 2 examines

the advantages and limitations of the iCloud system and its

evaluation against the criteria described above. In Section 3,

Sanscode, a proprietary cloud based solution developed at

Cyberdesign Works, is described. Section 4 examines the

limitations and future revisions of Sanscode in terms of the

criteria set. Section 5 presents a summary of this paper, with

conclusion remarks and future directions of work

 iCloud

With the increasing sales of smartphones and mobile network

enabled devices such as tablets and notebooks, the need for

decentralized data storage has emerged. In the case of the Apple

iPhone, for example, it was sufficient in the past to use a central

PC as the main storage unit for user data, as users would simply

synchronize their phone with their PC in order to maintain data

consistency. However, many users now posses multiple devices

and, as a result, syncing every such device manually is no longer a

feasible option. Apple's introduction of the iCloud system in 2011

was an attempt to address this and other issues.

The history of iCloud is well documented in literature; for

example, see discussions in (Rocchi, 2013). The main function of

predecessors to the iCloud system was to enable cloud computing

services amongst indigenous Apple applications, the official

iCloud API (Application Programming Interface) which allowed

third party application developers, to utilize Apple’s iCloud

services was unavailable until the use of iOS5 in 2011. However,

despite the introduction of iOS6 in late 2012, iCloud has been

criticised by many third-party developers for bugs that rendered

some features unusable, particularly in Core Data - Apple’s

database and data handling system (Apple Inc. 2013).

Additionally, storing and syncing larger amounts of data between

user devices also caused several major problems (Hamburger,

2013).

According to the recently held Apple Worldwide Developers

Conference 2013, iOS 7 would feature iCloud Keychain as a future

update. This would function as a secure database, allowing

information such as a user’s website login details, Wi-Fi network

passwords, credit/debit card details and other account data to be

stored securely. This would allow the data to be quickly accessed;

for example, using the auto-fill on a web page. However, the most

important advantage of Keychain is that it uses the relatively

strong 256-bit AES encryption technology (Dobbertin, 2005) for

data storage on Apple's devices, or when such data is pushed

from iCloud between a user's trusted devices.

Advantages of iCloud

Among iOS developers, iCloud is rapidly becoming the standard

cloud service. A principal strength of iCloud is its inbuilt database

management system (Core Data) which forms the basis of iCloud

and is often used as a foundational data storage framework. The

Core Data system can be compared to Structured Query Language

(SQL), as both are persistent data storage systems which allow

data to be managed via statements and queries. The main

difference between the two is that SQL is strictly a relational

database management system (RDBMS), whereas Core Data is an

object-oriented database management system (OODBMS)

(Paterson, 2006).

The main advantage of Core Data over SQL is that Core Data can

store complex data types as custom objects, allowing attributes of

these objects to be accessed and queried directly. SQL is limited

in this respect; although it is possible to store custom objects (e.g.

as binary data strings), this can often lead to deterioration in

performance and adds complexity to the application.

Furthermore, once an object has been encoded as a binary string,

its attributes and properties can no longer be directly accessed.

Other advantages of iCloud include:

After the initial set-up, iCloud handles the majority of the data

synchronization in the background. For example, if a user

downloads an application onto his/her smartphone it will

automatically be copied onto their other iOS based devices.

Application data can automatically be saved or backed up to

iCloud. For example, an application that allows a user to create a

MS Word document can also save that document to iCloud. If the

device and (hence) the application is lost, the data or the

document can still be restored.

iCloud is useful for e-commerce applications; a user can have a

single user id - in Apple's case an iTunes id. It can then use this id

to authenticate and purchase a range of services across platforms

and devices. With the future release of iCloud Keychain, this may

become a more prevalent feature.

For application developers, iCloud is particularly attractive as it

is relatively easy to use and requires little interaction from the

user; everything is authorized with the single iTunes' id and

handled in the background.

An application featured on the App Store is likely to have a

positive effect on its sales. An application is more likely to be

featured in App Store (solely at Apple’s discretion) if it adopts

Apple's technological frameworks. This has encouraged

developers to choose iCloud over other platforms (Counsell,

2013).

Limitations of iCloud

One of the major causes for concern with cloud services in

general is the privacy of users’ data. Many users often feel

uncomfortable with their data being stored in the cloud. For

example, Google has recently been accused of violating many

privacy laws with users’ data, when it takes the view that

information already available elsewhere on the Internet or in

public records is not to be regarded as private or confidential

(Svantesson, 2010). In the case of iCloud, application data is kept

encrypted on Apple’s servers, with Apple maintaining the master

key for decryption at its own discretion; for example, when

requested by government agencies (Foresman, 2012).

As with other cloud services, another challenge for iCloud is that

whilst network connections are becoming faster and more

affordable, the movement of large amounts of data can often be

slow and costly. This is especially the case if the user is

connecting over a 3G/4G network where many mobile service

providers still charge considerably high costs for data transfer.

However, the main limitations that we have experienced with

iCloud within our work are: 1) Data visibility; 2) Interoperability

issues; and 3) Apps' review time. These are discussed in the

following sections.

Data Visibility

A limitation with iCloud is that the back-up data is hidden from

both the developer and the user. Whilst an application can

configure its data to be automatically backed up in iCloud, such

data is not accessible as the actual process of backing up or

recovering is handled by the iOS/Mac OS system in the

background. This can cause the following problems:

If some malicious or corrupt data existed which causes the

application to malfunction, the user would have to delete the

application and reinstall.

If an application chooses not to have its data backed up via

iCloud, and the application is re-installed, then this will be

treated as a fresh install and all of the user’s data would be lost.

A reinstalled application whose data is backed up in iCloud might

continue to work correctly, until corrupted data last saved to the

iCloud is recovered.

Interoperability

Although Apple's iPhone has a strong market presence, other

systems such as Android (Meier, 2012) and Windows Mobile

devices are becoming more popular. Yet, a cloud service that can

work between different devices is not yet fully available. For

many Apps developers, the key limitation with iCloud is that it is

only compatible between iOS and Mac OS enabled devices. This

means that it cannot store or share data between the different

smartphone systems. For this reason iCloud is not a truly generic

cloud computing service. We shall return to these

interoperability issues later in this paper when discussing

Sanscode.

App Review Time

Another drawback concerning iOS is Apple’s review

process/policy for newly uploaded Apps. Here, a new App or its

updates could often take a considerable length of time (weeks) to

be approved and pushed live by Apple. This is due to Apple’s

policy on reviewing every application submitted to the App store.

With almost a million active applications in the app store as of

June 2013 (Costello, 2013), this lengthy review process is

understandable. Even if the review process was much faster, the

application still needs to be recompiled and submitted to Apple,

causing further delay and/or consuming extra resources.

Sanscode Applications Framework

To address the aforementioned interoperability issues with

iCloud, Cyberdesign Works have developed Sanscode, a custom

PHP based web-application development framework which was

originally developed to handle websites and online content

management systems. Specifically, Sanscode has been extended

with enhanced functionality to act as a cloud based data

repository between mobile devices and web servers, providing a

cross platform solution by adopting standard based/compliant

web technologies such as SQL and JSON. Figure 1 depicts a

practical realization of Sanscode, with fundamental operations of

the application development framework described as follows.

Figure 1: Mobile Apps/devices constructed using Sanscode

extract data from the central repository to create their own

local database.

The majority of the application data is stored on the server side

database in the form of JavaScript, HTML files and SQL entries.

This is depicted in Figure 1 as ‘Cloud Server and Database’.

When a user initially downloads the application, a connection is

made to the server and creates a copy of the database to store on

the local device. Once completed, the application has all the

necessary data to function without connecting to a server. In

essence, any downloaded applications can also have an "offline

mode" for execution when the device is not connected to the

Internet.

The application receives a version number representing the

version of the server's database it has downloaded and stores

this on the mobile device.

Each time the application is opened it checks if newer updates

have been made available to the server side database. If so, it

downloads all the new necessary data to update the local

database on the mobile device.

If a change is made to the server side data, the server's version

number is incremented; by comparing the version number of the

application to the version number of the server, only the

necessary data that is needed to update the application can be

determined and downloaded rather than downloading the entire

database each time.

Thus, the above discussion highlights how Sanscode enables the

application data to remain consistent across all devices, by

automatically syncing any changes made to the central data

repository. Technically, when applications are executed using

Sanscode, they are downloaded and cached (stored) in the local

store, allowing them to be re/started via Sanscode as desired.

This makes installing and updating applications relatively simple

(and seamless) to the user. In essence, Sanscode solves the cross

platform issues by having a central SQL database located on a

web server that communicates between devices using JSON (see

http://www.json.org/). JSON allows data to be encoded using a

Key->Value format then sent and returned as POST or GET data

in HTML requests. In passing, JSON is widely supported as a de

facto standard and is also relatively lightweight, making it a

practical method of communicating in the cloud. For transferring

large files, such as audio and images, Sanscode automatically

wraps them in a ZIP file before uploading to the device. The

advantages of using a ZIP file approach are four-fold: 1) ZIP files

are widely supported, 2) Multiple files/types can be bundled. 3)

Data is compressed thus reducing the total data transfer size. 4)

With a bundled ZIP a file transfer protocol can be used to

download the data. This last point allows an application to give

an indication of the download time and progress to the user.

The advantages of this solution are twofold; firstly, the

application can be dynamically changed without the lengthy

review process as required by Apple. Secondly, as the application

stores a version of the database in the device's permanent

memory, it can continue to function offline, thus separating it

from a simple/common webapp (Freeman, 2011). In effect, the

application exists in two places at any point in time; on the user’s

device and in the cloud. This approach is particularly beneficial

when the App requires an urgent update. Compared to iCloud,

which requires hard coding of these changes, re-compiling the

App and submitting it to Apple, the changes can be made

instantly on the server side database and then synced locally by

the Sanscode enabled application to the device.

 Discussions and Systems Evaluation

As cloud computing demands increase, the needs for cross

platform applications also increase. This adds further incentive to

application developers to seek an alternative in-house solution.

Viewed in this light, it is not difficult to envisage a decline in the

use of iCloud for mobile applications. However, whilst Sanscode

was designed to provide a platform neutral solution for general

cloud systems in light of the limited interoperability of iCloud,

there are still design aspects where improvements represent the

focus of our current work in progress. These are described below.

Security: Although Sanscode uses hashing to store sensitive

information such as passwords, it does not encrypt all of the

user's data. Similarly, communications between the server and

the device are, by default, unencrypted. However, the plan to

incorporate such default security safeguards is underway as

usage (and popularity) of Sanscode continues to grow.

Updates & Maintenance: At present, Sanscode is potentially

susceptible to the (inevitable) future updates by all proprietary

cloud based systems including iOS/iCloud and Android/Google-

Cloud systems upon which the respective mobile devices are

operated. To illustrate, one such problem we have experienced in

the course of our development of Sanscode concerned the

consistent parsing of JSON objects using a recently updated

system class file in iOS that rendered many functions deprecated.

Here, it is likely that, in the future, other functions may be

changed resulting in the data that is sent from the central server

being parsed incorrectly. As a platform neutral application

development framework, Sanscode should be maintained as a

matter of principle in accord with the updates from the (cloud

based) systems that it supports to ensure correct functionality.

Usability: From an application developer viewpoint, a principal

attraction of iCloud is that no explicit sign on is required of the

user, as the system automatically identify the connecting mobile

device using the iTunes' id of its owners. By contrast, a third

party solution such as Sanscode or Drop Box (Error! Hyperlink

reference not valid.) often necessitates the account registration

by a user/owner. Such single sign on (SSO) requirements

becomes a real issue when a user has multiple (different)

accounts on several third-party (albeit platform neutral) cloud

based systems for which a user may have potential different

credentials for each cloud service.

Several comments are in order. First, the iCloud system is

attractive as it offers many features to its users with little

interaction needed. Given the imminent introduction of Keychain

technology as described in Section 2, users of iCloud will continue

to be assured that the transactions made with the connecting

mobile devices are both easy and secure. Indeed, the recently

launched iPhone 5S (in late 2012) has incorporated a well

featured fingerprint scanner which helps validate the identity of

its user. Second, many iOS applications are developed by

individuals who may not have the resources to create their own

cloud services for supporting cross platform applications. For

them, iCloud naturally remains an appealing solution. Third,

application development in the iCloud environment based on the

well documented MVC (Model View Controller) design pattern as

described in (Apple Inc., 2013) facilitates flexibility in design

(particularly) at the services integration layer, as it decouples a

model object (application/data) from its presentation on the

device (view) within the cloud environment (where the

controller object operates). This in turns improves services

cohesion, enabling better management of web/services and data

both locally and remotely in a single service abstraction

framework enhanced (with exposed interface elements) to

realise a business transaction. As such, it provides a usability

focus that is completely at one with the SSO capability afforded

by iCloud.

Criteria Evaluation

The current implementation of Sanscode is compared with iCloud

using the criteria outlined in Section 1. The results are

summarised in Table 1, where the major differences are

highlighted

Please see Table 1 in the PDF version.

Summary and Conclusions

In this paper, we have shown how cloud computing has become

essential to modern day data needs, with users having multiple

devices across different platforms. We also examined the

approach adopted by Apple’s iCloud and compared it with

Sanscode.

The paper first highlighted iCloud as a cloud based solution

designed to work exclusively between iOS and Mac OS enabled

systems. As such, it lacks general interoperability that a 'true

cloud' solution might offer. By adopting standard based

technologies such as JSON and SQL, an alternative solution that

provides cross platform compatibility has been developed and

illustrated using Sanscode - specifically an OS/platform neutral

data repository constructed for mobile devices and web/content

management. Using iCloud as our benchmarking system, the

interoperability issues were studied in some depth, highlighting

some of the allied design issues including security, software

updates and maintenance, and importantly, the usability

concerns.

As cloud computing becomes more prevalent with widely

documented problems being addressed, we envisage that its

interactions within mobile computing community will continue

to increase and be improved. Further, with the mobile market

becoming more segmented in terms of operating systems and

their support, demand for interoperable cross platform solutions

such as Sanscode as described in this paper are likely to escalate.

To this end, further work on improving the proposed cloud based

data repository solution in the identified areas of work in

progress is currently underway.

Notes

1 Keychain is already used on Mac OS and utilizes private and

public keys to validate users.

2JNLP solved a similar problem; see

http://docs.oracle.com/javase/tutorial/deployment/deployment

InDepth/jnlp.html . However, being a Java-based technologies, it

is not supported by the native iOS system.

References

1. Apple Inc, (2013), 'Modal View Controller - Cocoa Core

Competencies', available at :

https://developer.apple.com/library/ios/documentation/genera

l/conceptual/devpedia-cocoacore/MVC.html, last accessed on

1/9/2013.

2. Apple Inc., (2013), 'iCloud for Developers', available at:

http://developer.apple.com/icloud/index.php, last accessed at

1/9/2013.

3. Apple Inc., (2013), 'Introduction to Core Data Programming

Guide', available at:

https://developer.apple.com/library/ios/documentation/cocoa/

conceptual/CoreData/CoreData.pdf, last accessed on 1/9/2013.

4. Costello, S., (2013), 'How Many Apps Are in the iPhone App

Store', (About.com Guide), available at

http://ipod.about.com/od/iphonesoftwareterms/qt/apps-in-

app-store.htm, last accessed on 1/9/2013.

5. Counsell, D., (2013), 'How to get featured on the app store',

available at http://www.realmacsoftware.com/blog/how-to-get-

featured-on-the-app-store, last accessed o 1/9/2013.

6. Dobbertin, H. (ed), Rijmen, H., Sowa, A., (2005), Advanced

Encryption Standard - AES, Proceedings of Advanced Encryption

Standard - AES: 4th International Conference (AES 2004),

Springer-Verlag, Berlin, Heidelberg.

7. Foresman, C. ,(2012), 'Apple holds the master decryption

key when it comes to iCloud security, privacy', available at

http://arstechnica.com/apple/2012/04/apple-holds-the-master-

key-when-it-comes-to-icloud-security-privacy/, last accessed on

10/9/2013.

8. Freeman, E., (2011), Head First HTML5 Programming:

Building Web Apps with JavaScript, O'Reilly Media LLC.

9. Hamburger, E., (2013), 'Apple's broken promise: why

doesn't iCloud "just work"?' available at

http://www.theverge.com/2013/3/26/4148628/why-doesnt-

icloud-just-work, last accessed on 31/5/2013.

10. Meier, R., (2012), Professional Android 4 Application

Development (Wrox Professional Guides), Updated edition, John

Wiley & Sons.

11. Paterson, J., Edlich, S., Hörning, H., Reidar Hörning, R.,

(2007), The Definitive Guide to db4o, 1st Edition, Apress,

Springer-Verlag, New York

12. Rocchi, C., (2013), iCloud for Developers, 1st Edition, The

Pragmatic Programmers, LLC.

13. Shankland, S., (2013), CNET.com, available atError!

Hyperlink reference not valid., last accessed 1/9/2013.

14. Svantesson, D. and Clarke, R., (2010), 'Privacy and consumer

risks in cloud computing', Computer law and security review, 26

(4), 391-397, also available online at:

http://epublications.bond.edu.au/law_pubs/347 [last accessed

on 1/9/2013]

