
IBIMA Publishing

Journal of Software & Systems Development

http://www.ibimapublishing.com/journals/JSSD/jssd.html

Vol. 2012 (2012), Article ID 840273, 16 pages

DOI: 10.5171/2012.840273

Copyright © 2012 Cătălin Strîmbei. This is an open access article distributed under the Creative Commons

Attribution License unported 3.0, which permits unrestricted use, distribution, and reproduction in any

medium, provided that original work is properly cited. Contact author: Cătălin Strîmbei E-mail: linus@uaic.ro

OLAP Services on Cloud Architecture

Cătălin Strîmbei

Al.I.Cuza University, Faculty of Economics and Business Administration, Iaşi, Romania

__

Abstract

Although OLAP technology seemed to be mature enough so that little real or disruptive changes

encountered in the last decade. Still the emergence and the wide spreading of some technologies

like Web Services, Cloud Computing and Big Data we believe that will have the potential to

paradigmatically change the OLAP technological landscape. One of the most important

consequences could be a more widely open access to web analytical technologies. In the current

paper we have tried to (re)evaluate the OLAP Web Services viability in the context of the Cloud

based architectures.

Keywords: OLAP, Data Web Services, Data Warehousing, SQL, Service Data Objects, Cloud

Computing, APEX, Google Docs, Amazon Web Services.

__

Introduction

With the advent of the BigData wave it

became clearly that OLAP-area will not be

avoided by this kind of technological

turbulence. In fact, the current technological

tendency of cloud computing with all its

direct and indirect consequences is the main

source of the technological and architectural

shift of OLAP context.

Considerations on Data Integration and

Data Warehousing Architecture

Generically, every OLAP application requires

a certain level of data organizing. That’s why

the OLAP technology is often considered as

part of a DataWarehousing architecture. The

current “cloud democracy” for data access

changed this architectural picture so that one

can perform analytical analysis on Web

provided data, as Lean Y. et al. (2008)

mentioned. Consequently, there are many

visual analytic tools based on web

technologies and standards to make easier

this kind of job for end-users. Here is the first

“gap” that we want to outline:

- Web provided data for analytics are not

quite appropriately structured for OLAP

processing, and

- The traditional and well-known OLAP tools

are not quite ready to smoothly integrate

these kind of data, otherwise than a pre-

integration phase that accumulates them

into a pre-defined Data Warehouse.

The primary architecture that someone can

think about as a valid solution to fill this gap

will have a Data Warehouse as basis, and

looking for solutions to allow web access, as

in Figure 1. Consequently the web standards

and technologies will be used, among others,

as an alternative for data interchange, but

most of the weight will still remain on

proprietary technologies and tools for Data

Warehouse.

Journal of Software & Systems Development 2

Fig 1. Base Architecture for Datawarehouse and OLAP

The Data Warehouse specific tools for data

entry/acquisition form the main gate into the

analytical context where the analytical

content is structured, stored and prepared to

be delivered to the “analytical consumers”.

This kind of tools is often known using the

ETL acronym, from Extract-Transform-Load

syntagma and they are considered extremely

important due to their potential data

integration role into any data consolidation

strategy that is specific to the

DataWarehouse systems, as Adzic J. et al.

(2007), Simitisis A. et al. (2007) and

Giordano A.D. (2011) outlined. The ETL tools

have, at least, two main kind of capabilities:

- Orchestration of heterogeneous data

processing;

- Definition of a data integration model to

be referenced by data processing.

3 Journal of Software & Systems Development

Consequently, the ETL specific tools not only

mediate the access to the providers of base

data sources , but they have to make

compatible with the heterogeneous data

sources to an denominated or common data

model from where OLAP tools could make

analytical assumptions like financial

diagnoses as those from the paper of

Pavaloia V.D. (2009).

Fig 2. The Comparison of ETL Architectures

We have to say, before anything else, that,

these days, the data interchange have

become increasingly more like data

integration, or, in other words, the data

interoperability become increasingly more

data integration.

Today, there are plenty of data access

technologies and “data drivers”. Beyond the

advantage of the richness of data sources,

there is at least one big issue concerning this

situation: the ETL tools must be extremely

complex to be able to integrate the

Journal of Software & Systems Development 4

heterogeneous data flows (data access

channels) and data formats.

Therefore, the web accessibility of business

data sources becomes one of the most

prominent trends of these days regarding the

evolution of data intensive business

information systems as those described by

Dospinescu O. and Perca M. (2011). The main

strategy to benefit from the openness of the

interoperability of web context consists in

using the web services based technologies as

a data interchange agent.

We already explored such data integration

strategy in a SOA based architecture, see

Strimbei C. (2012), the architecture that

guided our experimental work to transform a

“traditional” object-relational database into a

veritable (full-fledged) WDAS (as Web Data

Access Services). Our implementation was

based on SDO initiative (Service Data

Objects), explored by Antonioletti M. et al.

(2006), Portier B. and Budinsky F. (2004),

and Resende, L (2007), initiative usefully to

define a core data interchange format with

the advantage of being platform-agnostic.

Taking into account these considerations, the

ETL architectural pictures in Figure 1 could

evolve into a different architecture partially

illustrated in Figure 2.

Considerations on OLAP Engines and Cloud

Computing

The main ability of the OLAP engine

component from figure 1 is to resolve the

OLAP specific queries on data stored in the

accessible data warehouses (DW).

Consequentely, the components from the ETL

context have to integrate data flows, but with

respect to the data model which dictates the

composition of data structures from the Data

Warehouse.

The OLAP tools use specific data models that

are very different in nature than those data

models used by the operational business

information systems. The OLAP queries are

built on top of those data models that

support concepts like dimensions, measures,

variables, hierarchies, and formulas

discussed by Thomsen E. (2002).

The concepts that reflect the OLAP principles,

although their nomination varies among

different analytical products, imply a very

special data type system that must support

specific Business Intelligence (BI) analytical

functions. The output exposed to the end

user is very often like a dashboard, but the

underground data comes from the data

structures defined by the specific OLAP type

system. The most common name for a data

repository designed with this kind of data

type systems is the multidimensional

database (MD).

There are different incarnations or

implementations for OLAP specific data

types. They could be classified into three

major categories:

- The relational based category covers

those OLAP models that intend to have a very

solid and formal background that is founded

on those mathematical bases specific to

relational model, as Varga M. (2002) argued;

another very solid argument of this kind of

MD databases is the SQL support extended

with a specific class of operators that allow

OLAP queries presented by Celko J. (2006);

- The object oriented category covers those

OLAP models that are grounded on some

consideration regarding the inability of

relational based OLAP tools to properly

represents the semantics of some very

important OLAP concepts like

multidimensional projections, dimension

inheritance, derived measures etc., presented

by Pardillo J. (2008);

- The XML based category of OLAP tools

comes from the fact that a very large amount

of business operational data is stored and/or

flow as XML documents. Therefore there is a

need to analytically process these kinds of

data in the same way like the relational data

are analyzed multi-dimensionally, as

5 Journal of Software & Systems Development

Hümmer W. et al. (2003) and Park P. et al.

(2005) argued.

Consequently, the intimate nature of

multidimensional data type systems,

reflected by these categories, will

fundamentally determine the storage

systems that will persist the OLAP specific

data.

There is a difference between the fact of

being reachable “from the web” and actually

being “on the web”. The cloud computing

paradigm proves to be a “disruptive” shift for

building web-ready applications. The main

advantages of using this kind of web

applications deployed on cloud come from:

- The availability levels that could be

ensured by the cloud provider,

- The scalability and security levels, and

- The cost control of operating and

maintenance depending on the pricing

schema provided by the cloud provider.

The main issues or architectural differences

that need to be investigated refer to the

modularization levels and techniques to be

approached in the design of business

applications. In this regard, we already

proposed a BI-modularized architecture for

cloud computing, see Strimbei C. (2010). Our

modularization approach is based on these

guiding principles:

- Business Intelligence as a Service Oriented

Platform to include distinct and

autonomous (from the deployment point of

view) architectural components as

services;

- Cloud hosting based services, as a

combination of storage for inner BI data

structures (Data Warehouse storage in

figure 1), processing power for BI (ETL),

data transformation rules (like OLAP

engine in figure 1), and BI Reporting

visualization portal (like OLAP reporting

engine in figure 1);

- Client oriented customization workflow, to

define the entire data flow chain from the

base data sources to the BI reports

delivered to the end-users.

In our vision, this approach will have to

enable:

- A some degree of flexibility in the

architectural style: from a very focused and

very centralized cloud computing context

(where all services are hosted by the same

cloud platform) to a very modularized

architecture where any component ready

to be deployed as service could be resident

into a different cloud context but still

interoperable with the rest of the BI

system;

- A comfortable level of openness

concerning service interoperability, data

interchange protocol, workflow design,

definition and monitoring tools. This

openness is based on the richness of open-

source initiatives due to the tools like:

JasperServerAnalytics, Eclipse BIRT OLAP,

SpagoBI, PentahoBI and others (online)

like: PaloBI. Saiku, DataBrewery,

GoogleFusionTables&GoogleAnalytics.

This way, one can store the DataWarehouse

collections privately, but could still use an

OLAP SaaS in order to manage its OLAP

queries, or one can use a DBaaS to store its

DataWarehouse repository, and, in the same

time, could provide its own private OLAP

SaaS to run its OLAP queries and reports.

Discussion on OLAP and Web Service

Technology

An OLAP Framework for Cloud Architecture

Our framework proposal is grounded on the

modularization approach previously

discussed. Such design and deploy

framework for OLAP applications as cloud-

based web services (which we could call as

OLAPaaS) involves, at least, three specific

issues to argue:

Journal of Software & Systems Development 6

- Specific data interchange;

- OLAP specific data collections to store;

- OLAP specific queries to call and to

deliver their output.

Our opinion is that although XML based (with

XSD specific data type system) OLAP data

processing models (like XCube) may not be

superior to the OLAP-SQL Extensions or to

the semantic expressiveness of the Object-

Oriented OLAP models and languages, XML

remains critical from the perspective of Web

Services interoperability. There are two

points where XML-interoperability is critical

for our proposed BI architecture:

- The connection of the external web data

services with the ETL integration engine

where the simple form of the SDO standard

could be used (see figure 2);

- The integration of OLAP engine with the

OLAP data sources that could be:

- A cloud based DataWarehouse that can be

considered somehow internal to BI system;

- Any external data source which is

compatible with OLAP requirements,

meaning that depending on the

architectural style used, a customized

OLAP application system may not have a

private DataWarehouse but rather imports

its OLAP data from external service

providers.

The most simplified architecture for BI-OLAP

web services may assume that OLAP services

consume only external data sources that are

formatted consistently with OLAP

requirements. A more sophisticated

architectural style assumes a closer

integration with the base DataWarehouse for

OLAP queries. There are several possibilities

to deploy a such DataWarehouse on the

public or private cloud using DBaaS

(database as a services) platforms that

support the traditional relational data model

(SQL99), the object-relational data model

(SQL3, SQL2008, SQL2011) or the object

oriented data model (using NoSQL or pure

object oriented technologies like Cache).

Again, a minimal architecture for OLAP Web

Services will just deliver the results of OLAP

queries as plain textual data to other Web

components that will transform them in

some user oriented visual formats (like

JChart, BIRT Chart or GoogleChart). In this

context, can be elaborated a XML/SDO like

specific format in order to support OLAP data

interchange.

The Potential of OLAP Web Services

When they were invented, OLAP, as ONLINE

Analytical Processing, assumed a class of

software functions available throughout an

enterprise network system. The OLAP tools

have prevailed over time in the context of

Data Warehousing-DW, Decision Support

Systems-DSS oand Data Mining DM. The

ONLINE term has kept its relevance, but,

today, its contextual meaning has changed.

Today, ONLINE suppose mainly the web and

cloud-based technologies, therefore one can

observe the emergence of new technologies

like Web Warehousing, as Lean Y. (2008)

mentioned. Likewise, some other analytical

tools or technologies were re-branded as

Web Analytics, but we will prefer the OLAP-

Web Services term (with OLAP-WS acronym)

to better outline the predictable

technological context.

As one can easily concludes from the

framework shortly described above, there

are (at least) two quite different approaches

concerning developing and deploying of

OLAP as Web Services.

This first approach assumes a Business

Intelligence complex surrounding a very

integrated OLAP component, alongside with

ETL, DW and other highly sophisticated

analytical tools like data mining. This kind of

architecture has some distinctive features:

7 Journal of Software & Systems Development

- Existence of a comprehensive and

extensible ETL Layer;

- Storage of analytical data in a

technologically complex system like Data

Warehouse;

- The main and singular data provider for

analytical tools (OLAP) is the heavy data

warehouse system;

OLAP components, although they may be

accessible from external sites, they are not

considerate as fully-external-accessible

resources, because the OLAP data model and

the query engine are dependent on data

collections and formats from Data

Warehouse.

Therefore, the OLAP components could be

wrapped as Web Services in order to be

invoked with analytical requests on already

established (but not customizable) DW data

structures. The most flexible and functional

approach of a such architecture is to invoke

these OLAP-Web Services with dynamic

queries as parameters (compiled against

static DW data structures) in order to get

dynamic structured result sets which could

then be valued by some business user-

oriented tools like Google Docs Spreadsheets

with specific diagrams or chart gadgets.

OLAP Components as Autonomous Cloud-

Based Web Services

This second approach assumes that OLAP

Web Services will be released from the Data

Warehousing dependency. Among the

distinctive features of this kind of

architecture could be outlined:

The OLAP-WS admin-user will have to

provide data flows (which are already

dimensional or could be easily formatted this

way) to the original analytical data

collections that will be entirely stored

externally (maybe on another DBaaS cloud

platform).

The OLAP-WS will have to register these

data-flows as analytical data sources with

their URLs for access and with their specific

meta-data. The OLAP components will have

to use an internal registry which will not

store the actual analytical data but their

meta-data.

The OLAP-WS will provide mainly (as their

defining feature) the analytical-query-

processing service. It will not access (by

default) or will define internally a Data

Warehouse infrastructure, except maybe a

data storage system for temporary processed

data sets from external data flows.

The users’ visualization tools of OLAP dataset

results will be external, but they could be

integrated with original OLAP-WS so that the

concrete output of the query invocation to be

an URL to an external web document that

will host and visually model the OLAP

resultsets.

The OLAP-WS will not be dependent on any

existing DW infrastructure, but will be

dependent on:

- A dimensional-data-access protocol (XML

based) to interpret the inputs from the

registered data flows;

- A special extension of the query specific

OLAP language (like SQL-OLAP extensions)

that is necessary to mention the registered

data flows as a special kind of dimensional

data views;

- An analytical XML data format needed to

export/output the SQL-OLAP query results.

Experimental Study

In order to explore the possibility to develop

such Web Services project, using the already

presented OLAP framework, we made a short

experimental study.

Journal of Software & Systems Development 8

Architectural Issues Concerning OLAP

Autonomous Web Services - OLAP AWS

There are some important issues that come

in the way of developing a feasible

architectural background needed to deploy

the necessary components to support the

publishing of OLAP Web Services.

The generic functional work flow, covering

the activities ranging from the necessary

customization to the delivering analytical

result-set, assumes a sequence of activities

and among them the most representative

ones could be:

1. An OLAP WS-operation will be invoked in

order to insert meta-data necessary to

describe the necessary URIs into the

specific registry of the OLAP component.

These meta-data describes how to locate

original data sources in order to initiate

the analytical/dimensional data flows,

and to describe the structural types

necessary to parse the SQL-OLAP queries.

2. (Optional) An OLAP WS-operation will be

invoked in order to register the specific

OLAP consumers that will receive the

analytical result-set that will be delivered

by the OLAP component.

3. An OLAP WS-operation will be invoked in

order to specify the custom OLAP queries

on the registered data flows.

4. Some internal OLAP processing will take

place in order to parse remitted OLAP

queries and then to bind the data links to

registered data flows specified by these

queries.

5. Some internal OLAP processing will take

place in order to initiate the bounded data

flows and to process the OLAP

computations from the OLAP query.

6. Finally, some internal OLAP processing

will take place in order to format and

deliver OLAP result set to WS-invoker or

to registered WS-consumer.

In order to describe the external dimensional

data collections we distinguished (at least)

two possibilities:

- Using plain XSD complex data typing

infrastructure (metadata = XSD data

types);

- Using an associated XML document to

describe meta-data through its ordinary

elements (metadata = a collection of self-

contained XML tags).

The SDO standard, presented by Resende L.

(2007) and Strimbei C. (2012), could be used

to get data from external data sources and to

export analytical data resultsets produced

through OLAP query processing. Therefore

XSD schema describing SDO objects must be

included in WSDL document under the types

subtag of the definitions main tag. Also, the

SDO collection representing analytical

resultset will form the content of the body

tag of the envelop from the Web Service

response document.

Another critical issue concerns how to

represent Dimensional Data Links into OLAP

query language so that the query engine to

easily and correctly parse and then bind

these references to the actual registered data

flows. Taking into consideration the SQL-

OLAP query language, we can extend it in

order to mention these references:

1. As already configured external data

sources, their meta-data being stored

before into OLAP-WS configuration

repository;

2. As special formatted URLs to the

Dimensional Web Services, meaning that

those Web Services will actually provide

the already modelled data collection as

data dimensions and will interchange

them using a SDO-like standard;

3. By means of some sub-queries that will

invoke Data Web Services which will

provide analytical data that are not

already formatted dimensionally. These

9 Journal of Software & Systems Development

sub-queries will have the responsibility to

process these raw data taking into

consideration the specific dimensional

requirements as defined by Thomsen E.

(2002).

/* Listing 1: Templates for SQL-OLAP

subclauses to invoke external dimensional

data collections */

(1) Already registered

SELECT ...

FROM external_schema1.dimension_x …

external_schema1.dimension_y

GROUP BY CUBE ...

(2) Special formatted URLs

SELECT ...

FROM dimension_x@data_ws_uri_1 …

dimension_y@data_ws_uri_2

GROUP BY CUBE ...

(3) Subqueries to adapt source data to the

dimensional schema

SELECT ...

FROM

(SELECT a, b, c FROM

data_col@data_ws_uri_1) as dimension_x

(SELECT c, d, e FROM

data_col@data_ws_uri_2) as dimension_y

GROUP BY CUBE ...

The possibilities (2) and (3) from the

previous listing assume that OLAP query

engine has the ability to produce, through

some pre-compiling process, the dimensional

meta-data needed further in the OLAP query

processing (see the bellow paragraphs). The

@ symbol is used in order to mark the

external (not registered) WS data sources. In

this respect one could use even a more

advanced conventional SQL-sub-clauses to

introduce an XML formatted URL or message

instead of the actual alias of the registered

analytical data source.

The computing model of the autonomous

OLAP Web Services implies some distinct

characteristics:

- It will dynamically and transparently

invoke external-data-links into the OLAP

declarative queries.

- It will have temporary buffer the original

data sets to feed OLAP engine processing.

- It will have temporary buffer to store the

analytical resultset to support active SDO

collections in the context of large amount

of analytical data expecting to be delivered

to the OLAP WS consumer.

These characteristics could cause some

serious performance issues concerning:

- Query compilation time which is

dependent on the internal repository

performance and the internal computing

power necessary to parse SQL-OLAP text;

- Query execution time dependent on:

o The data-flow access time, in fact it is

about the data storage performance of the

analytical data provider and about the

network through-output;

o Processing algorithms to manage data

fetched with external data flows.

Also this OLAP-AWS computing model is fully

compatible with the cloud computing

approach. Consequently, this computing

model has also the potential not only to

outsource the computing resources, but also

to capitalize a new and grid-based computing

architecture.

Journal of Software & Systems Development 10

Feasibility of OLAP-AWS Architecture

The logical and physical architecture of our

autonomous OLAP Web Services consists in

that conceptual and concrete combination of

software components, together with their

residence context, that will address to the

issues outlined in the previous section.

In the following, we will briefly expose what

we consider to be a feasible solution resulted

from our architectural analysis.

At logical level, we differentiated the

following types of components that will

deliver the (relatively) autonomous

functionality that could be easily integrated

in a standardized way as a Web Services

Infrastructure:

- Analytical data providers;

- Dimensional data adaptors and wrappers;

- (optional) dimensional data storage (Data

Warehousing);

- OLAP autonomous engine;

- OLAP data consumers.

To prove the feasibility of the previously

proposed logical architecture, we have used a

tripartite cloud infrastructure based on:

- Amazon Cloud that hosts their own Web

Services accessible through Product

Advertising API;

- Oracle (demo) Cloud that hosts their own

APEX Platform which in its turn will host

our OLAP-Web Service prototype;

- Google Cloud that hosts their own Google

Docs Apps/Drive, which is quite suitable

for business oriented end users working on

a daily basis with web and cloud-based

data sources (analytical data sources in

this case).

Our experimental intention was to perform

some analytical queries on data from

Amazon Product Catalog, data that could be

acquired by invocation of the Amazon Web

Service accordingly with the Amazon Product

Advertising API. The Amazon Web Service

could be invoke with a classical SOAP

request, as the one listed in the following

script.

<!-- Listing : Amazon Product Advertising API

Request -->

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.or

g/soap/envelope/"

xmlns:ns="http://webservices.amazon.com/

AWSECommerceService/2011-08-01">

<soapenv:Header/>

<soapenv:Body>

<ns:ItemSearch>

<ns:AWSAccessKeyId>?</ns:AWSAccessKeyI

d>

<ns:Timestamp>?</ns:Timestamp>

<ns:AssociateTag>?</ns:AssociateTag>

<ns:Signature>?</ns:Signature>

<ns:Shared>

<ns:SearchIndex>?</ns:SearchIndex>

</ns:Shared>

<ns:Request>

<ns:Title>?</ns:Title>

</ns:Request>

</ns:ItemSearch>

</soapenv:Body>

</soapenv:Envelope>

11 Journal of Software & Systems Development

Fig 3. OLAP WS Proposed Architecture

The response will contain a collection of

items as the following template suggests.

<!-- Listing 3: Amazon Product Advertising

API Response -->

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.or

g/soap/envelope/"

xmlns:aws="http://webservices.amazon.com

/AWSFault/2005-15-09">

<soapenv:Body>

<TotalResults>?</TotalResults>

<TotalPages>?</TotalPages>

<Item>

<ASIN>?</ASIN>

<ItemAttributes>

<Manufacturer>?</Manufacturer>

<ProductGroup>?</ProductGroup>

<Title>?</Title>

</ItemAttributes>

</Item>

<Item>?</Item>

Journal of Software & Systems Development 12

<Item>?</Item>

<Item>?</Item>

… … ...

</soapenv:Body>

</soapenv:Envelope>

Therefore our OLAP infrastructure count on

the Amazon Web Service infrastructure, but

does not intent to change or to deploy a

specific functionality to the Amazon-Cloud

(internal) platform. It will just reuse the

Amazon Product Advertising Web Service

that could be invoked after a minimal

subscription procedure. In fact, the Amazon

platform, through this Web Service, will act

as a Data Provider for the dimensional

mediator component of our infrastructure,

see figure 3.

The main platform that will host the concrete

OLAP-WS implementation is Oracle

Application Express. The ORACLE company

offers an experimental cloud context at

[https://apex.oracle.com] site, and, also,

offers commercial hosting on their official

public cloud site

[https://cloud.oracle.com/mycloud/f?p=serv

ice:database:0:::::]. Oracle APEX may not be

the only option to potentially support OLAP

Web Services, but has some unique

advantages that will make it very convenient

for our approach:

- It has an extreme integration with Oracle

database context (SQL or PL/SQL).

- It owns a specific PL/SQL libraries that

allow direct integration of database

components with the Web access protocols,

including those used by Web Services

infrastructure;

- It has a very capable web application

development environment running on top of

APEX platform as the web applications that

will produce.

- Also, the integration of the APEX web

applications with Oracle Databases has

another major advantage: the possibility to

use the Oracle (11GR2) XML DB native web

services infrastructure so that any PL/SQL

procedure could be published as a full-

featured Web Service, or even an Oracle

schema could be queried using a Web Service

request.

Fig 4. Oracle APEX Web Services Repository

13 Journal of Software & Systems Development

Our Oracle APEX web application that will

finally deliver OLAP functionality, same as

Web Services will have the following package

of components (figure 3):

- Every external data provider will be

registered as a Web Service Reference in

Shared Components catalog (Dimensional

Link Repository).

The APEX environment (or the APEX specific

library system) provides the necessary APIs

to invoke the original referenced Web

Services and to convert the invocation result

into a PL/SQL. Our specific OLAP web

application assumes some special kind of

components that will make accessible these

components as some veritable object

relational views, as in listing 4, ready to be

invoked in any SQL-SELECT compatible

phrases.

/* Listing 4: Template of SQL phrase to

define OR Views Object

In order to access Web Service Result from

SQL context */

CREATE WS_DIM_VIEW as

SELECT * FROM

TABLE(ws_wrapper_fn(ws_ref))

/

- As we already mentioned, the analytical

data provider may not “supply” their

operational data as being already

compatible with the desired dimensional

schema; consequently, it may be necessary

to create some special PL/SQL components

that will refactor these virtual data

collections (views) in order to seamlessly

integrate them into an analytical

dimensional model, like star schema

(Dimensional Data Adapter/Wrapper).

- Oracle native SQL-OLAP extensions are, in

fact, the main reasons to ground this OLAP-

WS architecture on the APEX

infrastructure. Therefore our APEX

application has a relatively simple

component that will receive the original

WS-SQL query from WS consumers, and

they will make some simple parsing action,

as the ones necessary to bind WS-Refs

mentioned above to the internal OR views

that will access them and will transform

their resultsets into Oracle collections.

Finally they will invoke the Oracle native

SQL-OLAP engine and will manage the

queries’ result sets (using a very “delicate”

buffering system) in the course of

delivering analytical data to the next

component (OLAP Query Manager).

- The last fundamental component of our

APEX application is a PL/SQL procedure

that will be published as Web Service

endpoint and that will have the role to

receive the analytical resultset from

previous component, to convert these data

into an XML document, and to deliver them

to the analytical Web Service Consumer

(WS Spec: endpoint for analytical

resultset).

The last platform that we have mentioned in

order to sustain our OLAP web-based edifice

is the Google Docs (Cloud) Apps/Driver. As

the final mediator in delivering the analytical

data to the business user, Google Docs

Platform has some valuable advantages:

- It is native Web oriented, so that any

Google Doc is, in fact, a web resource with

a specific URL associated.

- It has a rich scripting environment (based

on Java Script) that include the libraries

necessary to invoke and interpret from a

Google Docs application any other web

resource, like Web Services.

A very short snippet to invoke a OLAP-WS

service could look like this:

Journal of Software & Systems Development 14

Fig 5. Google Script to Get and Process an Analytical Resultset from an OLAP WS

Conclusion

In this workpaper we have tried to argue an

open and web-based architecture where

OLAP web services prove to be the

cornerstone of the entire technological

edifice. The main advantages of such

components as OLAP web services consist in

the openness and flexibility concerning

interoperability and modularization on cloud

computing platforms.

The Cloud-based Web Services in general,

and, consequently, the OLAP Web Services

also, go beyond the “universal”

interoperability advantage by

braking/cracking organisational information

system boundaries. It is about to give more

control to service users, in fact this is the

story of the Internet paradigm. Ultimately,

the next virtual enterprises or organizations

will be about freely combining web-services

components into some very agile and ad-hoc

business processes. This new business

democracy involves at least two

requirements: as much control as possible

the end user services and, also, as much

autonomy as possible to the concrete

(deployed) service used.

Concerning only OLAP Web Services, at least

two opportunities could be foreshadow:

- One could produce analytic information

(web analytics) on some aggregated e-

commerce industry areas in order to sell

analytical industry reports/studies. This kind

of applications will be based on a predefined

Dimensional-Adaptor-Plug-in-System that

will take into account the main commercial

or public data providers (Amazon, Wallmart,

AppleStore, GooglePlay, Google Webstore,

etc.), in fact will be like a minimal ETL tool.

- One could build a highly customized OLAP

infrastructure but with a completed

outsourced ETL. This kind of services will

register Private Dimensional Data Sources

with the predefined format protocol (SDO

dimensional data format) and could exploit

cloud-ready services to deploy enterprise

analytics so that one could buy a cloud-

based-OLAP-computing model which could

acquire more computing power than from

the in-house servers.

15 Journal of Software & Systems Development

Acknowledgement

This work was supported by the project

"Post-Doctoral Studies in Economics: training

program for elite researchers - SPODE" co-

funded from the European Social Fund

through the Development of Human

Resources Operational Programme 2007-

2013, contract no.

POSDRU/89/1.5/S/61755.).

References

Antonioletti, M., Krause, A., Paton, N. W.,

Eisenberg, A., Laws, S., Malaika, S., Melton, J.

& Pearson, D. (2006). "The WS-DAI Family of

Specifications for Web Service Data Access

and Integration," SIGMON Record, Vol.35,

No.1, 2006; p.48-55.

Celko, J. (2006). "Joe Celko's Analytics and

OLAP in SQL," Morgan Kaufmann Publishers,

by Elsevier Inc.

Dospinescu, O. & Perca, M. (2011).

"Technological Integration for Increasing the

Contextual Level of Information," Analele

Stiintifice ale Univesitatii Al. I. Cuza din Iasi,

Stiinte Economice, vol. LVIII, 2011, ISSN:

0379-7864, pp. 571-581.

Giordano, A. D. (2011). "Data Integration

Blueprint and Modeling: Techniques for a

Scalable and Sustainable Architecture," IBM

Press.

Hümmer, W., Bauer, A. & Harde, G. (2003).

"XCube – XML for Data Warehouses,"

Proceedings of DOLAP'03, November 7, New

Orleans, Louisiana, USA.

Kozielski, S. & Wrembel, R. (2009). Editors,

"New Trends in Data Warehousing and Data

Analysis," Springer Science+Business Media,

LLC.

Neale, M. (2009). "Amazon AWS Signatures,"

[Online], Oct.2009, Available:

http://matthewneale.net/2009/10/11/amaz

on-aws-signatures

Pardillo, J., Mazón, J. N. & Trujillo, J. (2008).

"Bridging the Semantic Gap in OLAP Models:

Platform-Independent Queries," Proceeding

of the ACM 11th international workshop on

Data warehousing and OLAP, pg. 89-96.

Park, B. K., Han, H. & Song, I. Y. (2005). "XML-

OLAP: A Multidimensional Analysis

Framework for XML Warehouses," A Min

Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS

3589, pp. 32–42, 2005., Springer-Verlag

Berlin Heidelberg.

Pavaloaia, V. D. (2009). "Web Based

Application for SMEs Economic and Financial

Diagnose," In Innovation and Knowledge

Management in Twin Track Economies:

Challenges & Solutions, VOLS 1-3, The 11th

International-Business-Information-

Management-Association Conference JAN 04-

06, EGYPT, Published by Int Business

Informat Management Assoc, ISBN 978-0-

9821489-0-7

Portier, B. & Budinsky, F. (2004).

"Introduction to Service Data Objects. Next-

Generation Data Programming in the Java

Environment," IBM developerWorks;

http://www.ibm.com/developerworks/java/

library/j-sdo/

Resende, L. (2007). "Handling Heterogeneous

Data Sources in a SOA Environment with

Service Data Objects (SDO)," SIGMOD '07:

Proceedings of the 2007 ACM SIGMOD

International Conference on Management of

data, ACM, New York, NY, USA, 2007, pp.

895–897.

Strîmbei, C. (2010). 'Modern Architecture

Proposal For Business

Intelligence/Reporting Software Systems,'

Proceedings of The 4th International

Conference Globalization and Higher

Education in Economics and Business

Administration – GEBA 2010, Ed.

Univ.Al.I.Cuza, Iasi.

Journal of Software & Systems Development 16

Strimbei, C. (2012). 'Data Integration

Architecture Using Web Service Data

Objects,' INSODE 2012, Elsevier Procedia

Technology.

Thomsen, E. (2002). OLAP Solutions:

Building Multidimensional Information

Systems, Second Edition, John Wiley & Sons,

Inc, New York, USA.

Varga, M. (2002). "A Procedure of Conversion

of Relational into Multidimensional Database

Schema," Journal of Computing and

Information Technology - CIT 10, 2002, 2, 69–

84.

Wrembel, R. & Koncilia, C. (2007).

Editors, Data Warehouses and OLAP:

Concepts, Architectures and Solutions, IRM

Press (an imprint of Idea Group Inc.): Adzic, J.,

Fiore, V., Sisto, L. Extraction, Transformation,

and Loading Processes, pg. 88-110.

Yu, L., Huang, W., Wang, S. & Lai, K. K. (2008).

"Web Warehouse – A New Web Information

Fusion Tool for Web Mining," Information

Fusion 9 (2008), p. 501–511.

***, "Google Apps Script Overview," [Online],

Sept.2012, Available:

https://developers.google.com/apps-

script/overview

***, "Google Chart Gadgets," [Online],

Sept.2012, Available:

http://support.google.com/docs/bin/answer

.py?hl=en&answer=99488

***, "Product Advertising API Signed

Requests Sample Code - Java SOAP," [Online],

Sept.2012, Available:

http://aws.amazon.com/code/Product-

Advertising-API/2479

***, "Using Native Oracle XML DB Web

Services," [Online], Sept.2012, Available:

http://docs.oracle.com/cd/B28359_01/appd

ev.111/b28369/xdb_web_services.htm

