
IBIMA Publishing

Journal of Software and Systems Development

http://www.ibimapublishing.com/journals/JSSD/jssd.html

Vol. 2014 (2014), Article ID 904507, 12 pages

DOI: 10.5171/2014. 904507

Cite this Article as: Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali

(2014), "Software Ageing Measurement Framework Based on GQM Structure", Journal of Software and

Systems Development, Vol. 2014 (2014), Article ID 904507, DOI: 10.5171/2014. 904507.

Research Article

Software Ageing Measurement Framework Based

on GQM Structure

Aziz Deraman
1
, Jamaiah H. Yahaya

2
, Zaiha Nadiah Zainal Abidin

3

and Noorazean Mohd Ali
4

1
 Universiti Malaysia Terengganu, Terengganu, Malaysia

2, 3, 4

Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia

Correspondence should be addressed to: Jamaiah H. Yahaya; jhy@ftsm.ukm.my

Received date: 22 April 2013; Accepted date: 28 November 2013; Published date: 6 January 2014

Academic Editor: Jan Mendonça Corrêa

Copyright © 2014. Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd

Ali. Distributed under Creative Commons CC-BY 3. 0

Introduction

Previous works in related areas in the field of

software engineering have highlighted that

application software shows the behaviour

that is similar to ageing in human beings. It

exhibits that software also ages and the

process can be delayed and prolonged.

However, it is possible for us to understand

the underlying reasons and factors for the

occurrence of ageing and thus actions can be

taken to control its impact. Past research

Abstract

Previous studies have indicated that application software behaves in a manner that is almost

similar to the process of human ageing. Similar to human beings getting old, it is believed that

software too, can age in terms of its quality, usage and relevancy to the users and environment.

Even though ageing is unavoidable, it is possible to understand the reasons for its occurrence so

that steps can be taken to control its impact. Software product does not age in the physical sense

like human being. However, in certain situations, the software loses its significance and quality

to the users and environment. This manifestation can be illustrated as the process of ageing or

ageing phenomenon. Our research group has classified the software ageing factors in terms of

its product profile or contour, the environment, human aspect and the system functional. The

factors are then identified through literature, expert interview and brainstorming amongst

members of the research team. Inspired by earlier works concerning software certification and

quality, we have led to develop a software ageing model together with its associated domain

such as ageing factors and the rejuvenation index. In order to realize the model, a framework for

measurement and classification of the software ageing factors is designed and developed. The

design is carried out using Goal Question Metrics (GQM) approach. This paper presents the

framework and the mapping of the associate metrics to the relevant objective and classifying of

the ageing factors.

Keywords: Software Ageing, Software Ageing Measurement Framework, GQM, Ageing Factors

and Classification

Journal of Software and Systems Development 2

__

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

identified two categories of software ageing:

1) the type that is due to the inability of the

products to adjust to the forces at work in the

surroundings, and 2) the type that occurs as

a consequence of modifications (Parnas,

1994). Software is considered as a logical

product therefore it does not age in the

physical sense. However, in certain

situations, the software is losing its

significance and quality to its environment.

This can relates to the process of ageing. The

ageing process in software differs from that

in humans in the sense that the former can be

expressed in terms of various factors such as

its significance, frequency of failure,

technology, environment, and so on. At the

same time, software rejuvenation

encompasses the construction of the

software and the characteristics of the

software that can be adapted and revised; the

changes that must necessarily take place in

the environment so the software can

maintain its ‘youth’ and health. If the

software ageing factors can be ascertained

and distinguished, then the software can be

rejuvenated and its ageing can be delayed.

In the field of software engineering, software

ageing is a term that is used to describe the

gradual deterioration of the functioning or

condition of the software with the progress

of time. However, time is not the only cause

of software ageing, which is also strongly

influenced by the quality of the software and

whether that specific software can retain its

quality during the whole of its lifetime. As the

quality of the software tends to deteriorate

with time, it is necessary to rejuvenate it in

order to enhance the software and sustain its

quality, while at the same time manage the

factors influencing ageing. It has been

indicated in previous researches that

certification is one way in which software

ageing can be controlled. The procedure for

certification can be introduced at any point in

its lifecycle in order to gauge its quality so as

to be able to predict the deterioration of

quality of the software (Yahaya, Deraman, &

Hamdan, 2010; Voas, 1999).

We have managed to identify and explore the

causes of software ageing and these are

illustrated in this paper. Furthermore, we

also examine in this paper the ageing

measurements and classification developed

using the Goal Question Metrics (GQM)

approach. In the rest of the paper, we discuss

the research within the context of software

quality and certification, as well as matters

concerning software ageing. A framework of

software ageing measurement using GQM

approach is presented and a conclusion is

given in the final section of this paper.

Issues in Software Quality and

Certification

It has been shown in earlier studies that the

significance of the software at any point

during its lifecycle is determined by its

quality, and this characteristic is not

presented in the available software quality

models and preservation processes. A

substantial factors, measurements and

metrics that are encountered are attributed

to the measurement of quality from external

views and perspectives (Yahaya & Deraman,

2010). Several quality models have been

developed from previous works such as

McCall, Boehm, FURPS, ISO9126 and PQF

model. With the current demand from users,

technology and ecosystem, the quality model

needs to be more simple, precise and

practical so that it can be assessed by non-

experts, users, customers, designers or

investors. This is linked to the common

meaning of quality as “fitness for use” and

“conformance to requirements”. Fitness for

use is often taken to refer to features such as

practicality, ease of use and maintenance,

and the ability to be used repeatedly; whilst

“conformance to requirements” signifies that

the software is worth something to the user.

Very few of the quality models of the past

include or focus much on these requirements

(Voas, 1999; Tervonen 1996). The PQF

model highlights human and behavioural (or

technical) characteristics. These give a more

balance assessment of human needs or for

meeting the expectations of users (Yahaya

and Deraman, 2010).

Certification normally refers to the

procedure whereby a value is attached to an

3 Journal of Software and Systems Development

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

item, person or organisation, and this value is

validated by the issuance of a certificate,

which can be produced as evidence of its

authenticity. A software certification as a fact

sheet presenting the proven external

behaviours of the software (and possibly

proven internal behaviours as well) (Voas,

1999). Stanfford and Wallnau (2001) also

share the same view of certification as a

procedure whereby the value given to a

particular asset is validated by the issuance

of a certificate which can be produced as

evidence of its authenticity. This is the latest

software engineering theory which is fast

gaining recognition in the software industry.

The IT Times (2011) referred to Good

Software as a quality certification

programme designed by the Koreans and

which has been in use over the past ten

years.

Most of the software certification methods

depend mainly on official validation,

professional and developer evaluations, and

software measurements to ascertain the

quality of an item. Another method involves

measuring quality against the ISO9126 model

(Lee, Ghandi, & Wagle, 2007; Welzel &

Hausen, 1997; Heck et al., 2010). Some

examples of this method are the Good

Software mentioned in the IT Times, the

Requirement-driven Workbench and the

SCM-Prod (IT Times, 2011; Lee, Ghandi &

Wagle, 2007; Yahaya, Deraman & Hamdan,

2008). Such models are appropriate for the

normal evaluation of software with constant

features such as portability, usability,

dependability, maintainability, practicality

and competence. The above mentioned

studies are mainly aimed at validating

software items from the viewpoint of

developers, dealers and examiners and pay

little attention to the viewpoint and

participation of the users.

Earlier studies conducted by us concerning

software product certification applications

have proven that SCM-Prod model, which

uses the product quality method for software

certification, is suitable for maintaining the

quality of the product during its lifecycle

(Yahaya, Deraman & Hamdan, 2008; 2010).

This model uses PQF model as its standard of

quality certification. Our software

certification model pays more attention to

the participation of users in the assessment

process. Data concerning certification and

quality from 2007 until 2011 was analysed

and has revealed that software

measurements can be used to constantly

observe quality. The quality of the software

can be determined at any point in its lifecycle

and therefore this can assist experts and

developers to check the deterioration in the

value and quality of the software. Once the

software starts losing its value and quality in

the environment, it is deemed to be shifting

into the ageing phase of its lifecycle.

Therefore, it is vital that this ageing phase be

checked and prolonged by keeping the risks

and conditions to a minimum. By carrying

out the certification procedure on specific

software items some important information

can be acquired as to the quality of the

software in the environment, which can then

be linked to the ageing phase in the lifecycle

(Yahaya & Deraman, 2012). This

manifestation is illustrated in Fig. 1.

Fig 1 illustrates that software should follow

the ideal curve to gain maximum quality

throughout its life cycle. In reality and under

some circumstances the ideal curve of quality

may not be achievable by the software

product. It may fall down under the ideal

curve as shown in fig 1. There will be some

affected reasons for this occurrence. With

quality monitoring process such as Software

Quality Assurance activity, Software

Certification Method and etc. the quality of

the software product can be improved. Based

on this assumption and believe, software

product can be better improved too and its

quality can be enhanced if we can rejuvenate

it based on anti-ageing actions. Further

studies may be conducted to investigate and

identify the affected reasons and factors that

may cause this scenario and lead to earlier

ageing of the software.

Software Ageing and Rejuvenation

Past researches investigated the issue and

vocabulary of software ageing, which

Journal of Software and Systems Development 4

__

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

concern the gradual decrease of operating

system resources, data corruption and the

accumulation of statistical errors. Some

examples of such software ageing include the

bloating and leaking of memory, restricted

file-locks, storage space, etc. These studies

analyse the ageing of the Linux OS and

operating system software (Cotroneo, Natella

& Pietrantuono, 2010; Cotroneo et al., 2010;

Wah, 2008; Grottke, 2008). Preliminary and

basic software rejuvenation models were

designed and they comprised figures for the

transition state of system software (Wah,

2008; Huang et al, 1995). Grottke et al.,

(2008) suggested a fault tolerance method

utilising a range of settings to lessen the

impact of ageing on a system software. This

study concentrated on the impact of ageing

on system software that included the internal

condition of the system and trends with

regard to the consumption of resources, and

also researched further into the appearance

of bugs connected to ageing (Cotroneo,

Natella & Pietrantuono, 2010; Cotroneo et al,

2010).

Fig. 1: Illustration of software quality in time

The earliest work related to application

software ageing was carried out by Parnas

(1994). He suggested perspectives on

software ageing compared to human ageing

process. Software seemed to age in the same

way as human beings with the passage of

time. He claimed that software may not age

in the physical sense, but under certain

conditions it may gradually lose its

significance and value to the environment. In

such a case the software is said to be ageing

(Deraman, 2009; 2010). There are two types

of software ageing: 1) software ageing that is

due to the failure on the part of the owner of

the product to alter the product so as to

enable it to adjust to various needs and a

vibrant environment, and 2) software ageing

that is the outcome of alterations that are

made (Constantinides & Arnaoudova, 2009;

Deraman, 2010). Software ageing is

comparable to human ageing in terms of the

following steps and causes: inactivity, ill-

5 Journal of Software and Systems Development

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

informed surgery and kidney failure (Parnas,

1994). At the same time an earlier study

revealed that software failure today can be

traced mainly to software error (40%),

hardware error (15%), human error (40%)

and others (5%). Software ageing is crucial in

many applications software as it has been

proven that the failure of the software is

mainly caused by software error (Thein,

2011).

Software quality and software ageing are

tightly coupled as the former may serve to

determine the age of the software. The

quality of the software can be maintained

within a particular setting, the ageing of the

software may be prolonged, while at the

same time a system, procedures and factors

can be put in place to sustain this. Software

rejuvenation is a pre-emptive way of

handling software ageing (Yahaya, Deraman

& Hamdan, 2010; Yahaya & Deraman, 2010).

Therefore, it is highly important and

necessary to design software ageing

measurement model and a rejuvenation

index. In this model, the ageing factors will

be used to develop a rejuvenation guide by

identifying and controlling the factors that

prevent ageing.

In previous years, numerous methods and

techniques were developed to determine and

evaluate software product quality. Past

studies revealed that the precise internal

measurements that were used with

complicated and large programmes in the

earlier years are no longer required with the

technology that is available today, while the

external measurements are gaining in

importance and significance. The external

measurements are obtained by determining

the software quality characteristics through

the experiences of those who design and use

the software. The external characteristics

will be linked to the measurement of the

internal features to enable an impartial

judgment to be made of the software.

Cotroneo, Natella and Pietrantuono (2010)

explored the connection between constant

software measurements and software ageing.

In their research, software can be categorised

into two well-defined groups (littleAging and

bigAging) according to constant software

measurements with regard to ageing

principles. As this research is incomplete,

further studies must be carried out to

examine the effects of software ageing on

software measurements.

Establishing Software Ageing

Measurement Framework Using GQM

Preliminary studies reveal that some of the

factors that relates to software ageing are:

changing environment, operational failure,

technological challenges (hardware and

software), competition, commercial

compatibility, etc. (Yahaya & Deraman,

2012). In order to sustain and maintain the

high quality of the software through the

rejuvenation process several measures

should be taken including maintenance (to

correct, adapt, perfect and prevent),

reorganisation, repositioning and

redesigning. These measures should be

performed throughout the life cycle of the

software or until a new system is introduced

to replace the old software (Vliet, 2008).

While the software is being designed, the

system requirements will most probably not

remain the same because the environment

and the ecosystem are constantly changing.

As such, the final software that is produced

will not meet its requirements. If software is

to be practical it must be able to adapt to the

environment at any point in its lifecycle. This

is one of the rules or observations of

evolution dynamics that can be applied to the

issue of software ageing and its related

measurement. The other rules of evolution

dynamics are continuous growth, increased

complexity, organisational stability and

feedback system (Sommerville, 2011). These

rules will be taken into consideration in

order to determine the factors that affect

software ageing and will be applied in the

construction of the ageing model for

application software.

In the same way, in software engineering and

computer studies, our research group intend

to observe and implement the issue of ageing

in application software. Although software

Journal of Software and Systems Development 6

__

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

ageing is an innovative concept, the

preliminary study, carried out earlier, has

indicated that the issue is a significant one

that needs to be investigated and examined.

It might be beneficial to understand human

ageing if it can be applied in the field of

software ageing. Several factors have been

identified as being related to software ageing.

The preliminary study conducted by us has

revealed that some significant ageing factors

that have been obtained from the industry

include advancement in requirements,

technological challenges, commercial

compatibility and consistency, design

complications, deteriorating quality and

changes to the environment and ecosystem.

Around 30 people from various backgrounds

in the industry participated in this study,

which was carried out in Malaysia (Yahaya &

Deraman, 2012).

GQM focuses on the data gathering and

support the interpretation process (Basili &

Rombach, 1988). In basic GQM, there are

three levels of GQM structure. The first

structure is the conceptual level or known as

goal which specifies the object, purpose,

quality focus, viewpoint and environment of

the study. The second level is operational

level that contains all sets of questions that

relate to the goal. The third level is

measurement level (metrics). Thus, we can

see that goals contribute to the creation of

several sets of questions. Generated

questions also contributed to the metric to be

used as measures for the questions that have

been created (Gray & MacDonell, 1997).

As shown in Fig. 2, the basic GQM structure is

adopted in developing software ageing

measurement framework structure. At the

first level, the Goal is mapped to Factor that

determines the various issues affecting the

software ageing process. The Question in

GQM level is used to represent various

objective of measurement in order to

quantify the ageing factors. By setting the

objective, various questions could be raised

and developed in quest for the measures. At

the Metric level, the proposed framework

will also use the same structure to list all the

possible measurable metrics that could be

captured from the real environment.

Fig. 2: Software Ageing Measurement Framework Structure

Software Ageing Factors

From an extensive study on software quality,

software certification and software

maintenance, we have discovered that there

are four main factors that may influence the

age of software. The factors are realised and

identified through literature study (Parnas,

1994; Vliet, 2008; Yahaya et. al, 2008;

Constantinide & Arnaoudova, 2009; Cotroneo

et al., 2010), expert interview and survey

(Yahaya & Deraman, 2012; Yahaya et al.,

2006), and brainstorming approach (Paulus

& Brown, 2003; Isaksen, 1998). We have

conducted series of brainstorming sessions

and workshop to discuss on this issue.

GQM

GOAL QUESTION MEASURE

Software Ageing Measurement

FACTOR

OBJECTIVE

QUANTITATIVE

METRICS

7 Journal of Software and Systems Development

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

During the brainstorming sessions, we

provide a free and open environment that

encourages every member in the workshops

to participate. Quirky ideas are welcomed

and built upon, and all participants are

encouraged to contribute fully and create

solutions. The brainstorming sessions

increase the richness of ideas explored,

which means that we found better solutions

to the problems identified.

The identified ageing factors are:

• functional,

• environment,

• human,

• product profile.

Functional factor is related to the usefulness

of software. For example, if software can no

longer function as it used to, the software is

considered as ageing. The second factor is

environment factor. Environment factor is

the external factor involving accessories,

alternative and the change of technology. For

example, software is considered as ageing

because of environment factor if it cannot

accommodate the need for new technology in

its environment. The third factor of software

ageing is human factor. In human factor we

found that the related sub factors are

environment, staff, user, education, training

and popularity. For example, a software is

considered as ageing because of human

factor if its users are using it less frequently

because they prefer to use other alternative

software that is more popular. Finally, the

fourth factor of software ageing is product

profile or contour. The aspects that should be

considered in this factor are the acquisition,

purchase date, produce date, technology and

the age of software. For example, a software

is considered as ageing related to this factor

if software is originally acquired because of

company policy and the users are using it

less frequently because of the technology

that supports the software is outdated.

The Objective

At objective level of the framework, we

propose nine objectives that will serve all the

four software ageing factors identified

earlier. The nine objectives are shown in

Table 1.

Table 1: The Objectives

Objective Description

O1 To determine (functionality) dynamic of the software

application over time (can adapt with any changes and

current technology)

O2 To determine the stability of the software related to

software maturity index (SMI) (volatility of

maintenance activity)

O3 To determine the popularity of the software as

compared to other similar products

O4 To determine the age and technology used for the

software

O5 To determine the rationale of having the software

(cost/popularity/technology)

O6 To determine the level of education level of users and

support staff

Journal of Software and Systems Development 8

__

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

Objective Description

O7 To determine the level of training given related to the

software

O8 To determine the level of adaptation to current trend

(technology/ devices/ user interfaces)

O9 To quantify user’s satisfaction level in using the

software

The Quantitative Metrics

Within the scope of software ageing and

software quality issue, we have identified 27

metrics which represented by M1 to M27. All

the metrics can be captured from the actual

environment and easily quantified either

direct or indirect measurement. These

metrics are shown in Table 2.

Table 2: Quantitative Metric

Metric Measure

M1 The function upgrading of system per year

M2 The rational of using software (cost/technology/organization)

M3 Person who decide to use the software

M4 Popularity level of the software used

M5 Awareness level of software quality (organization)

M6 Awareness level of software quality (individual)

M7 Factors that influence people to use certain software

M8 Responsible unit to monitor the software quality

M9 The average age of software used (individual & organization)

M10 Factors that influence people change the software

M11 Adaptation of software to the changes of technology

M12 Adaptation level of people to the changes of software

M13 Influence of user involvement on user satisfaction

M14 User satisfaction level to the software

M15 Level of user satisfaction towards the given training

M16 Level of user satisfaction by the level of user’s education level

M17 Level satisfaction by user

M18 Factors that influence people to choose certain software

M19 Monitoring software quality (activity and procedure)

9 Journal of Software and Systems Development

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

Metric Measure

M20 Level of user’s satisfaction

M21 Adaptation of the software to the management changes

M22 Factors that make the software to be upgraded

M23 Factors that make the software to be dumped

M24 Importance of training before using the software

M25 Influence of technology changes to the current software

M26 Influence of management changes to the current software

M27 Maintenance activity of the software

The Mapping and Classification

The nine objectives mentioned above are

then mapped into factor at the first level. The

objectives (O1 to O9) are then broken down

into several metrics at quantitative level as

shown in Table 2. Table 3 shows the software

ageing measurement framework discussed in

this paper.

Table 3: Software Ageing Measurement Framework

Conceptual Level

Factor/Goal

Operational Level

Objectives

Quantitative Level

Metrics

CI

Functional

O1 M1, M12, M13, M14, M21, M25, M26

O2 M5, M6, M8, M19,M21, M27

O5 M2, M3, M4, M7,M18

C2

Environment

O2 M5, M6, M8, M19,M21, M27

O3 M2, M4, M7,M18

O4 M9, M10, M11, M12, M22, M23, M25, M26

O5 M2, M3, M4, M7,M18

O6 M16

O7 M15, M17, M24

O8 M11, M12, M21, M22, M25, M26

O9 M14, M15, M20

C3

Human

O3 M2, M4, M7,M18

O5 M2, M3, M4,M7,M18

O6 M16

O7 M15, M17, M24

O9 M14, M15, M20

Journal of Software and Systems Development 10

__

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

Conceptual Level

Factor/Goal

Operational Level

Objectives

Quantitative Level

Metrics

C4

Product Profile/Contour

O2 M5,M6, M8, M19, M21, M27

O4 M9, M10, M11, M12, M22, M23,M25, M26

O7 M15, M17, M24

O8 M11, M12, M21, M22, M25, M26

O9 M14, M15, M20

Conclusion

This paper has presented and discussed the

issues in software ageing and the identified

factors and measurements. This work was

motivated from previous studies in software

quality and certification which were carried

out by our research group centred in

Universiti Kebangsaan Malaysia. Four main

ageing factors for application software have

been identified, classified and mapped into

nine objectives and twenty seven metrics.

The basic structure, the classification and

mapping are implemented using GQM

approach which leads to systematic structure

of the measurement framework. The

proposed measurement framework of

software ageing can be used in many aspects

of quality measurements. For future

research, we intend to measure the logical

age of the software and delay the ageing by

introducing the rejuvenation index which can

guide the practitioners on the rejuvenation

actions to be implemented.

Acknowledgement

This research is funded by Fundamental

Research Grant Scheme, Ministry of Higher

Education Malaysia.

References

1. Basili, V.R. and Rombach, H.D. (1988), ‘The

TAME Project: Towards Improvement-

Oriented Software Environments,’ IEEE

Transactions on Software Engineering, 14(6),

58-773.

2.Constantinide, C. and Arnaoudova, V.

(2009), ‘Prolonging the Aging of a Software

Systems,’

[online]. Encyclopedia of Information Science

and Technology, Second Edition. [Retrieved

January 18, 2012]. http://www.igi-

global.com/viewtitlesample.aspx?id=14041.

3.Cotroneo, D., Natella, R. And Pietrantuono,

R. (2010), ‘Is Software Aging Related to

Software Metrics?’ Proceeding of the 2nd

IEEE International Workshop on Software

Aging and Rejuvenation (WoSAR 2010) in

conj. with International Symposium on

Software Reliability Engineering (ISSRE)

2010, San Jose CA, USA.

4.Cotroneo, D., Natella, R., Pietrantuono, R.

and Russo, S. (2010), ‘Software Aging

Analysis of the Linux Operating System,’

Proceeding of IEEE 21st International

Symposium on Software Reliability

Engineering IEEE Computer Society

Washington, DC, USA.

5.Deraman, A. (2009), ‘Software Certification:

The Way Forward (keynote),’ Proceeding of

The 5th Malaysian Software Engineering

Conference (MySec2011), Johor Bharu.

6.Deraman, A. (2010), Memburu Kualiti

Perisian (Inaugural Speech), UKM Publisher.

ISBN 978-967-942-967-1.

7.Gray, A. and MacDonell, S.G. (1997),

‘GQM++ A Full Life Cycle Framework for the

Development and Implementation of

Software Metric Programs,’ Proceeding of

ACOSM, 22-35.

11 Journal of Software and Systems Development

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

8. Grottke, Jr. M., Matias, R. and Trivedi, K.S.

(2008), ‘The Fundamentals of Software

Aging,’ Proceedings of the 1st International

Workshop on Software Aging and

Rejuvenation, IEEE.

9.Heck, P., Klabbers, M. and Eekelen, M.

(2010), ‘A Software Product Certification

Model,’ Software Quality Journal, 18, 37-55.

10.Huang, Y., Kintala, C., Kolettis, N. and

Fulton, N.D. (1995), ‘Software Rejuvenation:

Analysis, Module and Applications,’ [online].

IEEE. [Retrieved Feb, 9 2012]

http://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=466961.

11.Isaksen, S. G. (1998), ’A Review of

Brainstorming Research: Six Critical Issues

for Research,’ Monograph #302, June 1998.

[Retrieved Nov, 27 2013]

http://www.cpsb.com/resources/downloads

/public/302-Brainstorm.pdf

12.IT Times, (2011), ‘30 Korean Software

Worthy of Global Recognition in 2012,’

[online], [Retrieved January 22 , 2013],

http://www.koreaittimes.com/story/15607

/30-korean-software-worthy-global-

recognition-2012.

13.Lee, S.W., Ghandi, R.A. and Wagle, S.

(2007), ‘Towards a Requirements-driven

Workbench for Supporting Software

Certification and Accreditation,’ Proceeding

of the Software Engineering for Secure

Systems 2007 SESS’07 IEEE,[online].

[Retrieved February 17, 2012],

http://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=4273334.

14.Parnas, D.L. (1994), ‘Software Aging,’

Proceeding of ICSE '94 The 16th

International Conference on Software

Engineering.

15.Paulus, P. B. & Brown, V. R. (2003),

‘Enhancing Ideational Creativity in Groups,’

In Paulus, P. B.; Nijstad, B. A. Group

Creativity: Innovation through Collaboration.

Oxford, UK: Oxford University Press, 110–

136.

doi:10.1093/acprof:oso/9780195147308.00

3.0006. ISBN 9780195147308.

Sommerville. (2011), Software Engineering,

9th edition, Pearson Education: Boston.

16.Sommerville. (2011), Software

Engineering, 9th edition, Pearson Education:

Boston.

17.Stanford, J. and Wallnau, K. (2001), ‘Is

Third Party Certification Necessary?’

Proceeding of the 4th ICSE Workshop on

Component-Based Software Engineering:

Component Certification and System

Prediction.

18.Tervonen, I. (1996), ‘Support for Quality-

Based Design and Inspection,’ IEEE Software,

44–54.

19.Thein, T. (2011), ‘Proactive Software

Rejuvenation Solution for Software Aging,’

[online], [Rretrieved February 9, 2012].

http://eurosoutheastasia-ict.org/wp-

content/plugins/alcyonis-event-

agenda//files/Thandar-Thein.pdf.

20.Vliet, H.V. (2008), Software Engineering:

Principles and Practices, Chichester: John

Wiley & Sons.

21.Voas, J. (1999), ‘Certifying Software for

High Assurance Environments,’ IEEE

Software, 22-25.

22.Wah, B. (2008), Software Aging and

Rejuvenation, Wiley Encyclopedia of

Computer Science and Engineering, John

Wiley & Son, Inc.

23.Welzel, D. and Hausen, H. (1997),

‘Practical Concurrent Software Evaluation for

Certification,’ Journal System Software, 38,

71-83.

24.Yahaya, J.H., Deraman, A. and Hamdan,

A.R. (2006), ‘Software Quality and

Certification: Perception and Practices in

Malaysia,’ Journal of ICT (JICT), 5(Dec), 63-

82.

Journal of Software and Systems Development 12

__

Aziz Deraman, Jamaiah H. Yahaya, Zaiha Nadiah Zainal Abidin and Noorazean Mohd Ali (2014), Journal of

Software and Systems Development, DOI: 10.5171/2014. 904507.

25.Yahaya, J.H., Deraman, A. and Hamdan,

A.R. (2008), ‘Software certification model

based on product quality approach,’ Journal

of Sustainability Science and Management,

3(2), 14-29.

26.Yahaya, J.H. and Deraman, A. (2010),

‘Measuring the unmeasurable characteristics

of software product quality,’ International

Journal of Advancements in Computing

Technology (IJACT), 2(4), 95-106.

27.Yahaya, J.H., Deraman, A. and Hamdan,

A.R. (2010), ‘Continuosly ensuring quality

through software product certification: A

case study,’ Proceedings of the International

Conference on Information Society (i-Society

2010), London, UK.

28.Yahaya, J.H. and Deraman, A. (2012),

‘Towards a Study on Software Ageing for

Application Software: The Influential

Factors,’ IJACT: International Journal of

Advancements in Computing Technology,

4(14), 51-59.

