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Abstract 

 

The problem of searching the continuous k Nearest Neighbor (CkNN) objects in road net-
works is a major challenge due to the highly dynamic nature of the road network environ-
ment. Also, the fast increasing number of moving objects poses a big challenge to the CkNN 
search of moving objects. In addition, it is important to deliver a valid response to the user 
in an optimal time while taking into account the large volume of data and the amount of 
changes in the characteristics of moving objects. To effectively explore the search space as 
well as reduce the time spent to deliver a response to the user, we propose to combine the 
strengths of Formal Concept Analysis (FCA), as a powerful mean of clustering the moving 
objects–related information, and the processing capabilities of MapReduce, as a well-known 
parallel programming model. The mathematical foundation of FCA allows offering an ab-
straction of the network based on the neighborhoods. We build the concept lattice based on 
the binary relations between the target points as well as their properties. The latter are col-
lected from various sensors on the road network. We also propose a density-based road 
network partitioning approach and MapReduce function to distribute the search tasks. Fi-
nally, an implementation based on the Storm parallel programming model is discussed to 
show the effectiveness of our FCA-based solution. 
 
Keywords:K-Nearest Neighbors Queries, Spatial Road Network, Formal Concept Analysis, 
MapReduce. 
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Introduction 

 
With the proliferation of wireless commu-
nications and positioning technologies (e.g. 
GPS-Global Positioning System), applica-
tions and location-based services (LBS) 
have emerged and rapidly have gained 
more attention. A major problem in LBS 
concerns the search of nearest neighbors 
(NN). For example, a user in his car search-
es for the nearest restaurants throughout 
his path. The response to this kind of que-
ries must be valid at the time of receipt by 
the user. 

 
So far, the search of the k nearest neighbors 
(k-NN) is a major problem in data ware-
houses including data that describe dynam-
ic environments of moving objects.  

 
There are several techniques for pro-
cessing K-NN search queries in a static da-
ta-environment. In Roussopoulos et 
al.(1995), the authors propose a method 
for calculating the nearest neighbors in an 
R-Tree. An alternative based on Voronoi 
cells was proposed in Berchtold et 
al.(1998).  

 
Other works (Korn at al., 1996; Seidl and 
Kriegel, 1998) propose to run through the 
data set, several times, until the shortest 
distance is reached. Recently, research has 
focused on continuous k-nearest neighbors 
search queries (C-KNN) of moving objects 
in the context of road network (Lee et al., 
2009; Samet et al., 2008).  
 
A continuous query is a query that, instead 
of being processed only once at the mo-
ment of submission to the system, is con-
tinuously evaluated during a given time 
interval (Terry at al, 1992).  

 
With the absence of a standard processing 
such requests in a dynamic environment, 
several approaches have been proposed. 
The challenge is to provide users with valid 
responses upon receipt. 

 
To meet our goals, formal concept analysis 
(FCA) seems to be an elegant solution to 
allow grouping interest points (i.e. moving 
objects) in a hierarchy of levels.  
 
Each level corresponds to a group of mo-
bile objects that share a common set of 

properties (e.g., speed, position, direction, 
etc.). The adoption of FCA in various IT 
fields, such as knowledge extraction and 
representation (Lakhal and Stumme, 
2005), technologies related areas 
(Bendaoud et al., 2010) or databases 
(Rancz and Varga, 2008), has highlighted 
the importance of concept lattice struc-
tures. 

 
Thus, we propose a novel approach to con-
tinuous k-NN search which is applied to the 
road network context. Our contribution is 
based on a mathematical technique, namely 
formal concept analysis, in order to present 
a network abstraction that is based on the 
neighborhoods. Our approach aims to meet 
user needs, while considering the road 
conditions and the user context. 

 
However, the time spent to find the nearest 
moving objects will exceed the constraints 
for real-time execution. This also adds 
more complexity to the FCA-based search 
method as the complexity of parsing large 
concept lattice depends on the number of 
moving objects and the degree of changes 
in their properties. Thus, this problem be-
comes especially important and challeng-
ing as the number of moving objects in the 
road network increases.  

 
Similar to most big data applications, the 
big data tendency also poses heavy impacts 
on CKNN search systems. Indeed a real 
road network (modeled as a big complex 
graph) is composed of a very large set of 
nodes and their arcs. Each element is char-
acterized by a set of static and dynamic 
properties (e.g. disturbance factors).  
 
Such properties need to be processed in-
stantly in order to deliver the suitable re-
sponse (near moving objects) to a user. 

 
Existing methods still cannot support very 
large road networks (e.g. the whole USA 
road network). The main limitation of these 
approaches is either high memory con-
sumption or heavy search overhead.  

 
For example, for the whole USA da-
taset(24M vertices), we estimate that state-
of-the-art approach like ROAD(Lee et al., 
2009) needs over 105 days for pre-
processing, and SILC (Samet et al., 
2008)consumes approximately 618GB 



3                                                                                                        Journal of Software & Systems Development   
__________________________________________________________________________________________                                                                                                    
 

______________ 
 
Hafedh Ferchichi and Jalel Akaichi (2016), Journal of Software & Systems Development,  
DOI: 10.5171/2016.356668 

 

memory, which represents a very poor 
scalability and efficiency on large road 
networks. 

 
In this paper, we combine the strengths of 
FCA and MapReduce to present a parallel 
continuous k-nearest neighbor (CKNN) 
search method of moving objects in road 
network and we improve the efficiency of 
located moving objects by employing the 
MapReduce paradigm. In particular, our 
main contributions can be summarized as 
follows: 

 
Road network partitioning. We divide the 
road network into a set of smaller search 
spaces and deliver them to corresponding 
slaver servers to use their changing condi-
tions in the selection of candidate moving 
objects. 

 
MapReduce functions based onFormal Con-
cept Analysis. We show how the powerful 
mathematical method FCA is used to repre-
sent the data-related moving objects and to 
allow their clustering and effective parsing 
and search. In the Map function, we extract 
the near candidate moving objects accord-
ing to their properties using FCA. In the 
Reduce phase, we merge the candidate 
moving objects and compute their shortest 
paths and distance based on their proper-
ties as well as the current road data. 

 
Prototype implementation. We show how a 
parallel programming platform called 
Storm is used to implement the FCA-based 
search method. 
The rest of the paper is organized as fol-
lows: Section 2 presents our previous 
work. Section 3 gives an overview of the 
adopted technique. In Section 4, we present 
our parallel FCA-based approach to the 
search for k-nearest neighbors in a road 
network. Section 5 gives some details on 
the implementation and the performance 
evaluation of our kNN search approach. 
Section 6 summarizes the state of the art 
research methods of k-nearest neighbors in 
road networks. The last section is devoted 
to the conclusion and future work. 

 
Previous work 

 
In this section, we give an overview of our 
previous work(Ferchichi and Akaichi, 
2015). In the first sub-section, we start by 
presenting the Formal Concept Analysis 

mathematical formalism, we have adopted 
in our continuous k-nearest neighbor 
search method approach. The second sub-
section presents the main steps of the pro-
posed FCA-based search method. 

 
Formal concept analysis 

 
Formal Concept Analysis (FCA) is a math-
ematical formalism that provides hierar-
chically structured concepts and group 
objects having the same attributes. The 
resulting hierarchy of the FCA is known as 
Galois (Barbut and Monjardet, 1970) or 
concept lattice (Ganter and Wille, 1999). 
The mathematical foundation of FCA and 
conceptual structures that can be derived 
(Godin et al., 1995) have been exploited in 
several areas, such as classification and 
information retrieval (Carpineto and Ro-
mano, 2005), Web service selection 
(Azmehet al., 2008), ontology construction 
(Bendaoud et al., 2010), knowledge extrac-
tion (Lakhal and Stumme, 2005), software 
engineering (Tilley et al., 2005) and (Godin 
and Valtchev, 2005), linguistics (Priss, 
2005), etc. FCA allows building a concept 
lattice from a binary relation Objects X 
Attributes (see the next sub-section). 

 
Definition 1 (Formal Context): A Formal 
Context is a triplet K = (G, M, I) where G is a 
set of objects, M is a set of attributes and I a 
binary relation between G and M satisfying: 
I ⊆ G × P; (g, m) ∈ I with g ∈ G and m ∈ M, g 
means that the object has the attribute m 
or m is an attribute possessed by the object 
g.  

 
Definition 2 (Formal Concept): A Formal 
Concept of a context K = (G, M, I) is a pair 
(A, B): A ⊆ G, B ⊆ M, A’ = B and B’ = A, 
where A’ is the set of all attributes of B pos-
sessed by the objects of A and, in a dual 
way, B’ is the set of all objects having the 
attributes of B. The sets A and B are called 
respectively extension (Extent part) and 
intension (Intent part) of formal concept C. 
B (G, M, I) denotes the set of all concepts of 
the context K = (G, M, I). 

 
FCA-based continuous k-nearest neigh-

bor search in road networks 

 
A graph is a suitable candidate to model a 
road network. As shown in Fig. 1, a graph-
based road network, which is considered as 
the search space, consists of vertices 
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(nodes) that are connected by links (roads 
connecting the various nodes). The graph 
contains several static information (edges 

and nodes) and dynamic information (mov-
ing objects together with their characteris-
tics). 

 

 
Fig. 1: Research space at time t = 0 

 
Our FCA-based CKNN search method takes 
as input a graph-like road network and a 
set of candidate moving objects with their 
static and dynamic properties. It consists of 
the four main steps, described as follows: 

 
Step 1 (road network modeling).The 
search space or the road network is mod-
eled as a graph G.The aim of the first step is 
to transform the road network to an ab-
stract graph G. G is composed of a set of 
nodes N and edges E. The latter carries 
several types of information: static infor-
mation (nodes and edges) and dynamic 
information (moving objects and their 
characteristics). 

 
Step 2 (Formal context extraction).In our 
work, the characteristics of moving objects 
will be delivered in real time to our system. 
Based on the road information, and on the 
different characteristics of the moving ob-
jects, this step, first, performs the 
binarization of the moving objects’ charac-
teristics, then the generation of the matrix 
of formal context from the information 
extracted from the graph-based road net-
work. We denote by O all the moving ob-
jects, and by A the set of their attributes 
(characteristics of moving objects). 
 

Step 3: (Generation of the lattice of mov-

ing objects).  This step takes as input the 
formal context created in step 2, and gen-
erates a lattice of candidate points of inter-
est. Each formal concept in the lattice rep-
resents a candidate solution to a given 
search query. To reduce the time spent in 
the search within the lattice of moving ob-
jects, we propose to index all the concepts 
in the lattice based on what we call “level of 
concept”. A level is defined for each gener-
ated concept. An index table will be created 
(Level + concepts) in order to accelerate 
the search process. 

 
Step 4 (Query Evaluation or answer-

ing).This step consists of searching within 
the generated lattice in order to extract the 
relevant formal concepts. This allows re-
trieving the moving objects that can satisfy 
the user’s query. 

 
The use of FCA for searching the k-nearest 
neighbors is motivated by two main fea-
tures: the conceptual structure of the lat-
tice data and the hierarchy between the 
concepts. The complexity of lattice con-
struction depends on the number of mov-
ing objects and their properties. 

 
 The construction of concepts is equal to O 
(k.m), where k is the number of properties 



5                                                                                                        Journal of Software & Systems Development   
__________________________________________________________________________________________                                                                                                    
 

______________ 
 
Hafedh Ferchichi and Jalel Akaichi (2016), Journal of Software & Systems Development,  
DOI: 10.5171/2016.356668 

 

of an interest point, and m is the number of 
points of interest. The complexity of the 
search algorithm is equal to O(L) where L is 
the number of concepts. However, main-
taining the relevance of the delivered re-
sults mainly depends on reducing the re-
sponse time, because these results must be 
valid at the time of their receipt by the us-
er.  

 
To achieve our goals, the proposed ap-
proach aims to reduce the search space and 
the response time by parallelizing the 
search task. This is achieved with the use of 
MapReduce parallel programming parad-
ing as we will show in the following sec-
tions. 

 

MapReduce parallel programming  

Model 

 

In this section, we first describe the basics 
of MapReduce programming Model. 
MapReduce is a framework proposed by 
Google to allow processing highly distrib-
uted problems across huge datasets using 
large number of computers. The distribu-
tion of the large amount of data implies 
parallel computing since the same compu-
tations are performed on each CPU, but 
with a different dataset.  

 
In a MapReduce job, the master node first 
partitions input data into M 

independentchunks (where M is the num-
ber of Map tasks) and passes them to the 
mapper nodes. Each map task is inde-
pendently executed in a mapper node. Af-
terwards, in the map phase, each mapper 
generates a series of intermediate key–
value pairs based on the input data chunks 
and according to a user-defined Map func-
tion. The MapReduce runtime system then 
automatically sorts and merges these in-
termediate key–value pairs depending on 
the key. The intermediate data with the 
same key are divided into R segments 
(where R is the number of reducer nodes) 
using a hash function. Finally, after being 
notified of the location of the intermediate 
data in the reduce phase, each reducer ac-
cepts a set of intermediate key–value pairs 
and merges all the data with the same key 
value, then generates a series of key–value 
pairs according to a user-defined Reduce 
function(Li et al., 2015). 

 
Proposed approach 

 
In this section, we present the proposed 
framework for continuous k-nearest 
neighbour search in road networks with 
MapReduce (see Fig. 2). 
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Fig. 2: A system overview of the C

 
 In this figure, ellipses represent road ne
work data, squares represent processing of 
candidate moving objects and rows show 
the flow of data. 

 
As shown in Fig. 2, our CKNN 
od works as follows: 
Input road network is partitioned
Nsub-road networks. Each 
work will be processed ag
query by a mapper machine
evaluate the network state and the cand
date moving objects that belong to this sub
road network. 
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A system overview of the CKNN search approach. 

In this figure, ellipses represent road net-
work data, squares represent processing of 
candidate moving objects and rows show 

KNN search meth-

partitioned into 
s. Each sub-road net-

will be processed against the user 
query by a mapper machine, in order to 
evaluate the network state and the candi-
date moving objects that belong to this sub-

Mapper i reads the assigned 
work partition and returns
ing candidate moving objects that meet the 
user query. Mapper i outputs key/value 
pairs of near moving objects.
properties of moving objects
ues represent moving objects
 
For each unique intermediate 
ducer passes the key property and the co
responding set of intermediate values 
(near moving objects) to the defined r
duce function. According to these 
key/value pairs (in our
ties/candidate moving objects)
er outputs the final list of key/value pairs
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reads the assigned sub-road net-
returns the correspond-

candidate moving objects that meet the 
outputs key/value 

pairs of near moving objects.Keys represent 
properties of moving objects, whereas val-

represent moving objects. 

unique intermediate key, the re-
ducer passes the key property and the cor-
responding set of intermediate values 

to the defined re-
According to these 

r case proper-
/candidate moving objects), the reduc-

nal list of key/value pairs 
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of the k-nearest moving objects after filter-
ing according to the user requirements, and 
the feasible solutions. 
 
The next sub-sections give more details 
about each of the above steps. 
 
Density-based road network partitioning 

method 

 

The motivation behind dividing the road 
network data into sub-road networks is to 
reduce effectively the search space by deal-
ing with small graphs of roads.  
 
This allows searching the k-nearest neigh-
bors in parallel fashion. Finally, the inter-
mediate results are combined to get the k-
nearest moving objects.  
 
Using this approach, we can decrease the 
complexity of our previously proposed 
FCA-based search method(Ferchichi and 
Akaichi, 2015), as the time complexity of 
the search process is proportional to the 
size of the formal context and the concept 
lattice of candidate moving objects. 
 
However, it is important to adopt an effec-
tive partitioning technique to avoid the loss 
of road network and moving objects infor-
mation. In addition, the arbitrary partition-
ing method of MapReduce may be the 
origin of map-skew which refers to imbal-
anced computational load among map 
tasks (Kwonet al., 2012) and consequently 
to the non-satisfaction of user require-
ments. 
 
In addition, there is a big difference in the 
distribution of moving objectsacross the 
search space. Non-uniform distribution of 
moving objects would cause many prob-
lems.  
 
For example, query response time differ-
ence among different areas would lead to 
difficulties in decision-making. To solve 
non-uniform distribution problems, we 
need an intelligent regiondividingmethod 

to ensure the efficiency of query in differ-
ent areas and to improve the quality of 
delivered response. 
 
Considering the fact that the task of CKNN 
search depends on the road network state 
and its complexity in terms of roads (con-
sidered as arcs in the graph-based model-
ling), we adopt the density-based method 
proposed by (Aridhi et al., 2015). 
 
The proposed method consists of con-
structing partitions (chunks) according to 
the density of graphs. The goal behind this 
partitioning is to ensure load balancing and 
to limit the impact of parallelism and the 
bias of tolerance rate.The following defini-
tions are used: 
 
Definition 3 (Graph). A graph is a collec-
tion of objects denoted as G = (V, E), where 
V is a set of vertices and E⊆ V x V is a set of 
edges. A graph G′ is a subgraph of another 
graph G, if there exists a subgraph isomor-
phism from G′ to G, denoted as G′⊆ G. 
 
Definition 4 (Sub-road network). A 
graph-based Sub-road network G’ = (V’, E’) 
is a sub-graph of another graph (the whole 
road network) G = (V, E) iff V’ ⊆ V and E′ ⊆
 E. 
 
Definition 5 (Graph density). The graph 
density measures the ratio of the number 
of edges compared to the maximal number 
of edges. A graph is said to be dense if the 
ratio is close to 1, and is said to be sparse if 
the ratio is close to 0. The density of a 
graph G = (V, E) is calculated by 
 

�������	
� = 2.
|�|

	|�|.	|�|−���
 (1) 

 
Table 1 shows the density results of parti-
tioning the graph-based road network. The 
partition of sub-road networkSRN3 is 
smaller than those of SRN1 and SRN2 be-
cause of the possible alternatives offered to 
moving objects in terms of roads (i.e. arcs). 
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Table 1: Density example of the three sub-road networks 

 

Sub-road network Density 

SRN1 0.25 

SRN2 0.5 

SRN3 0.6 

  
Based on the results of the partitioning 
step, the moving objects and their charac-
teristics are represented in three Formal 
Contextsaccording to the number of Sub-
road networks. Consequently, three map-
pers are responsible for the search task 
within the generated formal contexts, in 

order to extract the near candidate moving 
objects. 
 
Due tothe space limit in the paper, we only 
present an example of formal context and 
lattice derived from the first sub-road net-
works (see Fig. 3 and Fig. 4). 

 

 
 

Fig. 3. Formal context of the moving objects assigned to the 1stmapper 

 

Next, we present the tasks of the Map and 
Reduce functions for processing the formal 
context and searching the k-nearest neigh-
bors through the lattice of moving objects. 
 
FCA-based MapReduce functions 

 

In this phase, we apply our FCA-based 
CKNN search method that we run on each 
sub-road network in parallel. Algorithm 1 
and 2 present our Map and Reduce func-
tions respectively. 
 
FCA-based Map function.In the Map func-
tion, the input key/value pair would be like 
<i, FCi>, where icorresponds tothe ith parti-
tion ofthe road-network, and FCi is a formal 
context representing a set of candidate 
moving objects at a time t. 

As shown in algorithm 1, the formal context 
FCiassociated tothe ith mapper is trans-
formed into a concept lattice Li of moving 
objects (line 1). For the construction of the 
lattice, we use one of the existing algo-
rithms (e.g. Bordat, Next Neighbor) offered 
with the Galicia 
(http://www.iro.umontreal.ca/~galicia/) 
tool.The lattice constructed by the first 
mapper isshown in Fig5.  
 
Then, for each concept Cj in the lattice Li, 
the mapper checks the status of each can-
didate object (lines 2 and 3), so that it can 
output the key/value pairs of near objects 
(line 4). 
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Algorithm 1. Map function

Require A Sub-road network graph, a user query, a formal 
Ensure key/value pairs of near candidate moving objects
1: Li← BuildMovingObjectsLattice (FC
2: for each Concept Cj in L
3:      ifMOStatut(Cj.Intent) = near 
4:EmitIntermediate(Cj.Intent, Cj.Extent)
5:      end if 

6: end for 

 

 
The output key/value pairs of the Map 
function would be like <P, MO>, where 
a set of properties characterizing a set of 
moving objects, and MO corresponds to

 
Fig. 4: Generated C

After searching within the lattice co
structed by each mapper, 
key/value pairs of all the Map functions 
(see Fig. 5) are then processed in the Shu
fle phase and grouped together by key (i.e. 
characteristics of moving objects). 
 
Finally, one node is chosen to calculate the 
distance and the shortest path to the
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Map function 

road network graph, a user query, a formal contect FCi 
key/value pairs of near candidate moving objects 

BuildMovingObjectsLattice (FCi) 
Concept Cj in Lido 

MOStatut(Cj.Intent) = near then 
EmitIntermediate(Cj.Intent, Cj.Extent) 

put key/value pairs of the Map 
function would be like <P, MO>, where P is 
a set of properties characterizing a set of 

corresponds to the 

candidate objects that are characterized by 
the properties P at a time t.

 

Generated Concept Lattice of Moving object for the 1stmapper

 

After searching within the lattice con-
structed by each mapper, the output 
key/value pairs of all the Map functions 

are then processed in the Shuf-
fle phase and grouped together by key (i.e. 
characteristics of moving objects).  

Finally, one node is chosen to calculate the 
and the shortest path to the can-

didate moving objects that share the same 
properties. Note that this phase is out of 
the scope of this paper, as the movement of 
data is transparently orchestrated by the 
adopted MapReduce framework (see se
tion 5). 
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Fig. 5

FCA-based Reduce function
path problem in real-road networks is the 
cornerstone of the reduce pha
CKNN search process. 
 
 The reduce function receives a set of pairs 
<P, MO> that represent the near moving 
objects (results of the FCA-based Map fun
tion after eliminating the far moving o
jects). The reduce function, then, computes 
the distance and the shortest path to
near candidate object. Only near objects 
that have a distancesmaller
threshold (specified by the user) 
kept. 
 
In the Reduce function, the input key/value 
pair would be like <P, MO>. 
function outputs a sorted list of moving 
objects according to the calculated 
es. We use the distancebetween the query 
point and a candidate moving object
key in the outputs of the Reduce function 
(see Algorithm 2). 
 

 

Algorithm 2. Reduce function

RequireA set of key/value pairs
Ensure key/value pairs of candidate moving objects, key = P, Pair = MO
1: for eachMOdo 

2:      Pth←ShortestPathComputation 
3:D← ComputedDistance(Pth)
4:EmitIntermediate(D, Pth)
5: end for 

 
As shown in the above algorit
ducer starts by calculating, for each 
moving object, the distanceD
est path toeach moving object (line
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5: Key/value pairs’ outputs of the Map phase 

 

Reduce function. The shortest 
road networks is the 

cornerstone of the reduce phase in the 

The reduce function receives a set of pairs 
<P, MO> that represent the near moving 

based Map func-
eliminating the far moving ob-

jects). The reduce function, then, computes 
distance and the shortest path to each 

near candidate object. Only near objects 
distancesmaller than a given 

(specified by the user) will be 

function, the input key/value 
MO>. The Reduce 

function outputs a sorted list of moving 
objects according to the calculated distanc-

distancebetween the query 
point and a candidate moving object as a 

in the outputs of the Reduce function 

To compute the shortest distance between 
the query point and each cand
moving object, we adapted D
rithm.  
 
According to Denardo [29
rithm is the most time efficient algorithm 
for computing the shortest path. Complex
ty of the computation time is O(nm log(n)), 
where n is the number of nodes in the 
graph-like road network and 
of outgoing arcs of the graph.
 
The procedure ShortestPathComputation
based on Dijkstra's algorithm. It takes as 
input a query point QP and a candidate 
moving object MO. The procedure output is 
a shortest path from QP 
corresponding distance. 
 
The distance is defined by its origin (QP
QPy) and destination (MO
tions.Note that the distance and path co
putation is not realized on a separate sub
graph of the road network, bu
tial road network. 

Reduce function 

set of key/value pairs 
key/value pairs of candidate moving objects, key = P, Pair = MO 

ShortestPathComputation (P, MO) 
ComputedDistance(Pth) 

EmitIntermediate(D, Pth) 

shown in the above algorithm, the re-
s by calculating, for each near 

Dand the short-
moving object (lines2 and 

3). Since, several pairs may have the same 
distance with the query point
sorts them by distance and according tothe 
number of nodes in the selected path
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ty of the computation time is O(nm log(n)), 
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rtestPathComputation is 
based on Dijkstra's algorithm. It takes as 

and a candidate 
. The procedure output is 

 to MO, with its 

The distance is defined by its origin (QPx, 
) and destination (MOx, MOy) posi-

Note that the distance and path com-
putation is not realized on a separate sub-
graph of the road network, but on the ini-

). Since, several pairs may have the same 
distance with the query point, the reducer 

distance and according tothe 
odes in the selected path. Fi-
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nally, the reduce function returns output 
key/value pairs in the form of<D, Pth>, 
where D is a distancein kmwith respect to a 
minimum threshold, and Pth corresponds 
to the shortest path between the query 
point and the candidate objects MO. 
 
The following is an example of reduce func-
tion’s output: 
 

<5.4;{N1, N5, N9, N10, N12}> 

 
Here the key 5.4 is the distance in km 
whereas the value {N1, N5, N9, N10, N12} 
represents theshortest path composed of 
five nodes. 
 
The final output of this CKNN search pro-
cess in the road network is an ordered list 
of the k-nearest neighbors and their posi-
tions in the corresponding sub-road net-
work. 
 
In the next section, we present the imple-
mentation details of our FCA-based CKNN 
parallel search approach. 
 

Implementation and parallel CKNN 

search settings 

 
The implementation of our prototype con-
sists of three phases: (1) the extraction of 
the formal context, (2) the generation of 
the lattice of moving objects, and (3) the 
search of interest points within the gener-
ated lattice. Our prototype is implemented 
with the Java language. 
 
To improve its scalability and efficiency in 
big data environment, our prototype is 
implemented on Storm (Toshniwal et al., 
2014), a widely-adopted distributed com-
puting platform using the MapReduce par-
adigm.We choose this platform between 
other dominant open-source MapReduce 
frameworks such as Apache Hadoop 
(http://hadoop.apache.org/) and Spark 
(http://spark.apache.org/). 
 

Apache Storm is an open source and a fault 
tolerant framework forprocessing large 
data inreal time. Storm allows real time 
data analysis, machine learning,sequential 
and iterative calculation. It is characterized 
by itssimplicity, scalability and speed of 
calculation.  
 
More precisely,it processes the data in the 
order of one million tuples persecond for 
each cluster nodes. Following a compara-
tive studyof Stormand Hadoop, we find that 
the first is geared for BigData applications 
in real time while the second is effective 
forbatch applications. 
 
 Also, Hadoop stores its data in the HDFS 
and thus does not allow iterative computa-
tion, whereas Storm allows different re-
sources and iterative computation. 

 
Stormuses the key-value format and sup-
port streaming mode (contrarily to Haddop 
which processes the data in batch mode), 
which is suitable to the case of continuous 
search of moving objects with changing 
properties (e.g. speed, position, etc.) in 
road networks with dynamic states. 
 
Based on this comparison, we implemented 
the parallel FCA-based search algorithm 
using Storm because itis suitable for real 
time applications. 
 
Regarding the evaluation of the accuracy 
and scalability of FCA-based CKNN search, 
to see the impact of the number of moving 
objects on the complexity of lattice con-
struction and k-nearest neighbors’ extrac-
tion, extensive experiments are conducted. 

 
We have varied the number of moving ob-
jects (between 500 and 4000) in a road 
network graph containing 500 nodes (see 
Fig 6). 
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Fig. 6: FCA based search vs FCA-MR based search 

 

Compared to the FCA-based search meth-
od, the parallelization of the search (FCA-
MR) task significantly reduced processing 
time. This is explained by the partitioning 
of the unique context (used in FCA-based 
method) into a set of formal contexts with 
reduced sizes (in FCA-MR method). There-
fore, the lattice constructed from each 
small formal context isprocessed in an ac-
ceptable time and, hence, complexity is 
reduced. 
 
Moreover, partitioning the road network 
graph also reduced the search space (500 
nodes in the case of the FCA-based method) 
unlike our FCA-MR approach, which allows 
browsing small sub-graphs (e.g. 125 nodes 
in the case of the first Mapper). 
 
Fig. 6 also shows that, when the number of 
moving objects exceeds 2000, our FCA-

based method is no longer able to return a 
valid response in a reduced time which 
violates one of the major constraints in the 
continuous k-nearest neighbor research 
problem. The integration of MapReduce 
logic into our FCA-based method has al-
lowed delivering a valid response inan op-
timal time (see case of 4000 moving ob-
jects). 
 
To ensure that the FCA-MR method main-
tains an acceptable level of performance 
even in large scale CKNN problems and to 
ensure that the processing time will not be 
affected by the increase in the size of for-
mal contexts, we conducted another series 
of test by varying the number of moving 
objects from 5000 to 10000 (see Fig. 7). 

 

 

 
 

Fig. 7: FCA-MR performance with large number of moving objects 

 

As shown in Fig. 7, the increase in the 
number of moving objects did not affect the 

performance of our FCA-MR method. This 
is explained by the logic of allocating Map 
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and Reduce tasks in Storm. A suitable con-
figuration of blocks’ size in Storm may 
guarantee partitioning the formal context 
in small portions of formal contexts. 
 
Related work 

 
To resolve the kNN search problem, several 
approaches have been proposed. The most 
common classification of this problem is 
based on the way the distances between 
points are calculated, including Euclidean 
distance and the distance of shortest path.  
 
Multidimensional indexing techniques have 
been studiedextensively such as the R-tree 
(Guttman, 1984). Several variants of the R-
Tree appeared among them R * Tree 
(Beckmannet al., 1990) or the X-Tree 
(Berchtold et al., 1997).  
 
These indexing structures have shown 
their limits in case of higher dimensions. 
The work proposed by Song and 
Roussopoulos(2001) suffers from the qual-
ity of results, as it highly depends on the 
number of examples as input. If the number 
of examples is small, the result will be 
wrong. In Khyati and Akaichi(2008), De-
launay triangulation is used for modeling a 
road network consisting of direct routes 
joining points of the space. The authors 
propose to apply a partitioning model in 
the road search space, by adding weighting 
factors such as urban traffic, elapsed time, 
velocity. 
 
Recent attempts, such as Zhonget al.(2013) 
which propose an index G-tree to find the 
k-NN at a given location, have shown limi-
tations relative to the size of the studied 
network. 
 
Most of the above discussed approaches 
showed shortcomings and are, in most 
cases, unable to satisfy the users, especially 
in case of large dimensions or in case of 
dynamic context. However, the relevance 
and effectiveness of the expected results 
depend heavily on the way the search 
space is indexed and on the research meth-
ods used in these indexes’ structures. 
 
MapReduce-based approaches. Recently, 
the MapReduce parallel programming 
model has been applied to resolve the kNN 
problem(Stuparet al., 2010; Yu et al., 2015; 
Zhu et al., 2015; Ji et al., 2013; Lu et al., 

2012).However, they cannot be directly 
applied to the problem of k-NN search over 
moving objects, as they suffer from large 
preprocessing and update costs.  
 
Akdogan et al.(2010) presented a distrib-
uted Voronoi index and techniques to an-
swer three types of geospatial queries in-
cluding reverse nearest neighbor (RNN), 
maximum reverse nearest neighbour 
(MaxRNN) and k nearest neighbor (kNN) 
queries. The location of a point in Voronoi 
takes extra time. It also incurs high mainte-
nance cost and computation cost when the 
dimension increases. 
 
SpatialHadoop (Eldawy, 2013)is a 
MapReduce framework that aims to sup-
port k-NN spatial queries. However, itis not 
suitable to the processing of continuous k-
NN queries, since it is not specifically de-
signed for moving objects and because the 
MapReduce paradigm employed by 
SpatialHadoop is a batching-oriented pro-
cessing paradigm and is not good at han-
dling the incremental changes to the query 
results caused by numerous small updates.  
 
SpatialHadoop does not consider the 
maintenance cost explicitly, and the index 
may not work well in the presence of fre-
quent position updates. 
 
Based on the above discussions, our work 
aims to resolve the majors issues related to 
exploring the search space as well as re-
duce the time spent to deliver a response to 
the user. This is achieved by combining the 
strengths of Formal Concept Analysis, as a 
powerful mean of clustering the moving 
objects–related information, and the 
processingcapabilities of MapReduce, as a 
well-known parallel programming model. 

 
Conclusions and future work 

 
In this paper, we have proposed an ap-
proach to the continuous k-nearest neigh-
bor search in road networks using a syner-
gy between Formal Concept Analysis and 
MapReduce parallel programming model. 
The proposed method relies on a density-
based partitioning technique that considers 
road network characteristics. It uses the 
densities of roads in order to partition the 
search space. Such a partitioning technique 
allows a balanced computational load over 
the distributed collection of machines and 
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replaces the default arbitrary partitioning 
technique of MapReduce. 
The proposed method allows creating, 
from a partitioned graph-based road net-
work, a set of formal contexts to be used in 
the construction of the corresponding con-
cept lattices. These later represent the hi-
erarchy of characteristics of the candidate 
moving objects. 
 
 Once built, the step of searching points of 
interest in each lattice can be performed by 
a set of Mappers in a parallel fashion, 
through a classification scheme offered by 
the generated lattice of moving objects. 
Finally, the extracted concepts in the map 
phase are processed by the Reducers in 
order to return the nearest objects. 
 
The mathematical foundation of FCA meth-
od has ensured a high level of accuracy and 
trust in the delivered answers. Also, the 
MapReduce framework was used to effec-
tively deal with the highly distributed 
CKNN search problem across huge number 
of moving objects. 
 
In the future work, we will study the influ-
ence of disturbance factors (e.g. traffic jam, 
accident) on the quality of delivered re-
sponses. We, also, intend to validate our 
approach through a set of experiments. 
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