
IBIMA Publishing

Journal of Software & Systems Development

http://www.ibimapublishing.com/journals/JSSD/jssd.html

Vol. 2016 (2016), Article ID 557104, 9 pages

DOI: 10.5171/2016.557104

Cite this Article as: Zenon Chaczko and Wael Alenazy (2016), "Modelling Gesture Recognition Systems ",

Journal of Software & Systems Development, Vol. 2016 (2016), Article ID 557104,

DOI: 10.5171/2016. 557104

Research Article

Modelling Gesture Recognition Systems

Zenon Chaczko
1
 and Wael Alenazy

2

1
The Centre for Innovation in IT Services and Applications (iNEXT), Faculty of Engineering and

Information Technology University of Technology, Sydney

2
The Centre for Innovation in IT Services and Applications (iNEXT), Faculty of Engineering and

Information Technology University of Technology, Sydney and King Saud University, Riyadh, KSA

Correspondence should be addressed to: Wael Alenazy; walenazy@ksu.edu.sa

Received date: 31 August 2015; Accepted date: 9 December 2015; Published date: 7 June 2016

Academic Editor: Janet Renwick

Copyright © 2016. Zenon Chaczko and Wael Alenazy. Distributed under Creative Commons CC-BY

4.0

Introduction

Gesture recognition (Erol et al. 2007, Nickel

& Stiefelhagen 2007, Fengjun and Shijie

2010) represents a relatively new field of

study. In recent years, gesture recognition

technologies have become readily available

for educational use (Montero 2013) and a

general public at an affordable price. The

most prominent of these technologies is the

Kinect for Xbox and Windows. The Kinect

camera units are equipped with multiple

sensors that are integrated (Wong 2011) to

allow for captures of standard color

pictures, infrared pictures and depth

sensing. These capabilities allow the

system to be used in various augmented

reality mobile applications where skeleton

and hand recognition functions do not

require extensive computation capabilities

(Prasad 2013). The recognition features

allow for a different type of input control in

various applications. Often these

recognition features are used in immersive

and interactive applications (Dede 2009,

Dunleavy et al. 2009). One of the most

prominent of these applications is the

Augmented Reality (AR) which is

commonly used in educational, training,

entertainment or even military contexts

(Chaczko and Alenazy, 2014, Sholtz, 2014,

Chen et al. 2014, RemoteLab 2015). The

recognitions features allow the user or

actor, who is in front of the camera, to

apply different hand gestures, signals or

body movements as the controls for an

Abstract

Gesture recognition technologies have recently become available to a general consumer

market. The most notable of these technologies rely on camera to support gesture

recognition using multiple sensors that allow for standard color pictures, infrared pictures

and depth sensing. These capabilities allow for a variety of applications, including a body’s

skeleton or hand recognition. The recognition features allow for a multiple type input

control. They allow an actor, who is in front of the camera, to apply different hand gestures,

or body movements as the controls for an application or game that is running on the system

the camera is plugged into. This paper discusses modelling and simulation of gesture

recognition technologies.

Keywords: modelling and simulation, gesture recognition, multiple sensors systems.

Journal of Software & Systems Development 2

__

Zenon Chaczko and Wael Alenazy (2016), Journal of Software & Systems Development,

DOI: 10.5171/2016. 557104

application or game that is running on the

system the camera(s) is plugged into.

Another gesture recognition technology,

that is available for general consumer

market, is DepthSense from SoftKinetic

(2014).

The DepthSense cameras provide functions

designed to recognise hand gestures at a

close range, as well as, various functions

that require a support for longer range

interactions suited for the full skeleton

recognition applications. At present, there

are multiple ways of developing software

available for these cameras. Microsoft has

developed its own freely available Software

Development Kit (SDK), and there are other

third party options. One such option is

SoftKinetic’s IISU SDK. IISU is the “Most

advanced real-time 3D gesture recognition

software platform on the market”

(SoftKinetic 2014). The IISU SDK does not

currently have direct support for the Kinect

camera but that feature will be available in

an up-coming update of the SDK.

This paper elaborates on the investigation

of the IISU infrastructure software as a

platform for modeling, simulation and

development tool of gesture recognition

user applications. These user applications

would allow decision makers to monitor

the actors who are in front of the camera,

as well as, to enable controls that can be

hooked into a piece of software in order to

facilitate remote controls.

Modeling of Gesture Recognition

Initial Requirements

For simplicity, there was a rather small set

of initial requirements (Table 1) being

defined for the development of the

software system prototype to monitor the

camera(s), actors and the third party

applications.

Table 1: General Requirements for the Prototype

ID Description Priority

GRS-001 Users shall be provided with an application that

can monitor the camera and actors

Mandatory

GRS-002 Users shall be able to control third party

applications

Mandatory

GRS-003 The application shall run on smart devices Mandatory

GRS-004 The Gesture Recognition System shall use the

IISU SDK toolkit

Mandatory

GRS-005 The application will work with gesture

recognition camera(s) such as Kinect and/or

similar

Non-mandatory

GRS-006 The Gesture Recognition System will allow for

high usability of the selected third party

middleware

Non-mandatory

Figure 1: Model-View-Controller (MVC)

3 Journal of Software & Systems Development

__

Zenon Chaczko and Wael Alenazy (2016), Journal of Software & Systems Development,

DOI: 10.5171/2016. 557104

Programming Environment

A prototype of Gesture Recognition

application was implemented using

ASP.Net and HTML5. The rationale was to

ensure that the application will be able to

run on various smart devices using

Android, iOS or Windows Phone. For

portability, the application was developed

using HTML5 scripting instead of using a

dedicated high level programming

language such as Java, Objective C or a .NET

C# language. This decision was made due

to all three major mobile operating systems

supporting HTML5 as an application

language. Using HTML5 also allows the

application to be run in various Internet

browsers on desktop or laptop computers.

The IISU SDK was another reason to use

ASP.NET and HTML5. The IISU SDK

includes .NET language libraries for both

C++ and C# to allow for a direct

communication with the DepthSense

cameras. Since IISU’s SDK does not support

Java or Objective C, this ruled out the

development of an Android or iOS

application. Windows Phone applications

can be developed with .Net languages such

as C#; however, there was no readily

available testing and integration platform

for this option to be viable. Thus, for these

reasons alone, a language that allows for

the use of Internet browsers that run on all

three operating systems was chosen.

Architectural Model

Choosing the language to be ASP.NET,

along with previous experience, limited the

design architecture to the Model-View-

Controller (MVC) architecture (Fig. 1). The

MVC architectural model consists of three

separate types of information

representation. The model also includes

application data and business rules. The

MVC view consists of anything that the user

is able to see on the screen, which can

consist of a graph or an image, or the whole

page that is shown in the Internet Browser.

The controller is what converts the user’s

input into logic for the model and

displaying different views.

Hardware

The initial hardware decision was to use an

Xbox Kinect as the camera hardware for

the system. This was due to the fact that

they are readily available to consumers.

Also, Microsoft provides its own SDK for

the Kinect; however, this was not

compatible with the IISU SDK and could not

be installed, if the IISU was to be used. This

decision was changed in favour of using a

DepthSense 325 camera a half way through

the project, due to compatibility issues with

the current version of the IISU middleware

and the Kinect camera.

Application Communication

There is a number of different ways for

communication between separate

applications. These include: Windows

Communication Foundation (WCF), named

pipes, and Microsoft remoting. Each option

was investigated for usability in the

application. Microsoft remoting has

become a legacy technology that has been

essentially replaced by WCF. Hence, WCF

was chosen as the method for

communication between two different

applications due to better application

integration. WCF provides the ability for

applications to communicate while running

on the same machine, as well as, for

applications that are running in distributed

computing environment.

Development Technologies and Tools

For the development and testing of the

application, the Samsung Galaxy S2

smartphone and Nexus 7 (Google) tablet

running Jellybean Android, as well as a

desktop PC with Windows 8, SoftKinetic

DepthSense 325 and the Xbox Kinect were

used. For developing the software

application, the following software tools

were used:

• Visual Studio 2012. This was used as the

main program to develop the application in

HTML5 and ASP.NET. It also allowed for

the integration of the IISU SDK.

• IISU middleware. The IISU SDK and

middleware were used to create scripts

that can be integrated into a .NET

application; these help determine the

actions that the actor is taking in front of

the camera.

Journal of Software & Systems Development 4

__

Zenon Chaczko and Wael Alenazy (2016), Journal of Software & Systems Development,

DOI: 10.5171/2016. 557104

• Internet Information Services (IIS). This

was used to host the website which

allowed for testing on mobile devices.

• Chrome for Android. This was the web

browser that was used as a testing

platform.

Application Development

Streaming

Originally the plan was to stream video

directly to the website being developed. In

researching the camera and reviewing the

documents of the IISU SDK, this was not

easily achievable with the samples

provided. The camera works by taking

individual frames of the scene and then

processing them to give the relevant

information, such as where the actor or

player is. As such the SDK provides a

connection to be able to pull the image

information frame by frame. To use this for

streaming, each frame would have to be

individually added to a video file, which

would then stream to the website. If the

camera is then left running while building a

video, storage issues could occur. Instead of

streaming video, individual images which

would refresh at the time the user chooses

were implemented. Using individual

images allowed for the image to be

displayed quickly on the website due to

their small size. There are still issues with

this, as when the user chooses a higher

refresh rate (100ms), the image flickers on

and off while the image is updated. This is

less noticeable at higher refresh rates such

as one second.

Controlling Separate Applications

Integrating WCF into the application was

not very difficult due to previous

experience and online resources. The only

issue that arose was that a service in the

control panel needed to be running. In the

administrator tools in the control panel, in

the services application, the Net. Tcp Port

Sharing Service needed to be turned on.

This was to allow WCF communication

using the Net.tcp implementation.

The IISU Middleware

The original plan for this project was to use

a Kinect camera for the IISU SDK to

communicate with. This plan was changed

to use the DepthSense 325 camera from

SoftKinetic due to compatibility issues

between Kinect and the IISU middleware.

In order to use the Kinect with IISU, the

OpenNi framework is required to be

installed. This was unable to be achieved

due to version changes of both IISU and

OpenNi. OpenNi recently updated to

OpenNi version 2 which has more

compatibility with Kinect. This version was

not compatible with the IISU SDK as it did

not recognise the framework as being

installed. Unfortunately, downgrading the

OpenNi to version 1.5 and installing Nite,

another piece of software supplied by

OpenNi, and a specific Kinect driver

provided by OpenNi also did not work as

recommended by their previous

installation notes. This was because the

latest IISU SDK version had been upgraded

and was not able to communicate with the

camera. It was also not possible to

download a previous version of the IISU

SDK to communicate with the previous

version of OpenNi, due to the fact that the

IISU site does not provide this option. Using

the DepthSense 325 was easier to use and

install as it is a camera provided by

SoftKinetic and the drivers have direct

compatibility with the IISU middleware.

Once the drivers were installed, the users

are able to choose the camera as the source

and instantly start using it with the IISU

middleware.

Help and Support

The help and support systems for the IISU

SDK that were found over the course of the

project were not entirely sufficient. IISU

middleware itself provides a number of

ways for help and support such as a

helpdesk ticketing system, and a forum

where users and IISU employees can post

problems and solutions that they have run

into.

The user forums are a moderate source of

information for problems and solutions

that SoftKinetic provides. Posting a

problem on the forums does not guarantee

an immediate response, or any response at

5 Journal of Software & Systems Development

__

Zenon Chaczko and Wael Alenazy (2016), Journal of Software & Systems Development,

DOI: 10.5171/2016. 557104

all from someone, which can be frustrating

if time is a factor. The existing problems

and solutions on the forums do not cover a

wide variety of issues and a lot of the forum

posts have not been responded to with a

solution. The user forums are a moderate

source of information for problems and

solutions that SoftKinetic provides.

Figure 2: The IISU’s Lua script

Posting a problem on the forums does not

guarantee an immediate response, or any

response at all from someone, which can be

frustrating if time is a factor. The existing

problems and solutions on the forums do

not cover a wide variety of issues and a lot

of the forum posts have not been

responded to with a solution. This resource

was tolerable for help and support but

could benefit from more active users.

Getting in direct communication with

SoftKinetic was not easy either. The

helpdesk page did not have an obvious

create new ticket option, and the styling of

their website on the helpdesk page was not

consistent and hard to navigate. Once a

ticket has been created, however, the

questions were answered quickly,

thoroughly and they were very helpful. The

only email option for SoftKinetic is to get in

contact with the sales department. The

sales department was quick to reply and

gave as much help as they could with the

issues that arose.

IISU Scripts

The Interaction Designer is part of the IISU

software that allows developers to create

scripts that can be used to recognise

people, body parts and gestures. The

presented example of the Lua script (Fig. 2)

checks whether the user’s hand is shown

on the screen, and then, if it is shown will

output whether or not the users hand is

open or closed. The language the scripts

are written in is Lua. The Interaction

Designer offers a fairly easy to use interface

that offers the developers pre-defined

inputs that the camera can provide, such as

left arm angle, right hand angle, and torso

position. These inputs return specific

information that can be utilised by the

developers to create scripts they wish to

implement in the application. For example,

using the angle of the torso and arms, and

the position of the head of the user, the

script is able to recognise someone bowing

to the camera. Also, if the camera is the

close interaction DepthSense 325, it offers

a number of different inputs such as

whether the user’s hands are open or

individual information about the user’s

fingers. The scripts are able to compute

these inputs and outputs into specific

variables of the developers’ choice. For

example, in the previous example of the

user bowing to the camera, instead of

outputting the individual angles of the

user’s torso and head, the script can output

a Boolean that just shows if the user is

bowing or not.

Journal of Software & Systems Development 6

__

Zenon Chaczko and Wael Alenazy (2016), Journal of Software & Systems Development,

DOI: 10.5171/2016. 557104

The Interaction Designer offers a number

of tools that allow for easier creation of the

scripts by developers. These include the

ability to record a video and use it as the

input to the script instead of the camera.

This allows for easier development as it

will mean the developers do not have to

keep getting up and performing an action

in front of the camera to test the script. The

Interaction Designer also allows for real

time debugging which enables the

developers to create the script and see the

inputs and outputs instantaneously

without having to run a separate

application and restart if the code has

changed. The .NET libraries that IISU

provides also provide an easy way for these

scripts to be utilised. They allow for the

script to be imported to the application

being developed in .NET and give access to

the outputs the developers have created in

the script itself.

Net Support

The IISU SDK provides libraries that can be

implemented with the .Net Languages. The

specific languages that they support

directly are C# and C++. The

documentation that IISU provides is far

more thorough for C++, which provides a

lot more sample code and information

about the specific functions that can be

used. The documentation shows examples

of container classes, such as Vector3 and

Image, which seem to be completely

different in the C# documentation and

implementation. Through research and

experimentation, it was found that the

classes are named only slightly differently

in C#.

Communication between the DepthSense

camera and .NET languages is handled well

with the IISU libraries. To start using the

camera, a few steps need to be taken before

turning the camera on. First an IISUHandle

must be declared. The IISUHandle is the

integration point of the IISU Dynamic-link

Library (DLL), which allows for the

creation of the camera device, and gives

access to two services, the events and

commands. The handler can also load

specific external configuration files if the

user wishes; otherwise the system will use

the configuration that has been set up in

the IISU Advanced Configuration. Once the

handler is created, the camera device can

be created and started. When the device

has been started, the code can start pulling

and updating frames of the scene the

camera is viewing. If the developers

choose, they are also able to load the script

files that have been created within the IISU

middleware. This will allow the developers

to have access to the outputs that have

been specified in the scripts. To start

pulling information from the camera, after

the device has been set up, querying of the

information that the camera can be

provided is possible as well.

Figure 3: A sample of the depth map image

7 Journal of Software & Systems Development

__

Zenon Chaczko and Wael Alenazy (2016), Journal of Software & Systems Development,

DOI: 10.5171/2016. 557104

This is done by registering a data handle

from the device, and specifying what

information is wanted from the device.

There are specific strings values that are

sent to the device to pull the information,

such as “SOURCE.CAMERA.COLOR.Image”

which will return an ImageData object that

the camera can provide (Fig 3).

Retrieving an Image from the Camera

The main requirement of this project was

to be able to monitor what the camera was

seeing. Being able to pull an image from the

camera was not the easiest part of the

project. The task might look deceptively

trivial, due to the fact that pulling the

ImageData from the camera is fairly easy.

Pulling the ImageData is done by

registering a data handle, just like all the

other information the camera can provide.

The ImageData provides information about

the image, such as width and height. The

image itself is stored in memory and the

ImageData contains a pointer to this

location. Converting the image to

something that is viewable is not a trivial

task. First, the pointer must be converted

to an array of sixteen bit integers. This

should be the raw image data property,

which still needs to be normalised. This

Integer array is then normalised into a byte

array, which can then be converted into a

bitmap and then saved. The ability to save

the depth image was found in a forum post

on IISU’s website, and the code needed to

be heavily experimented with and altered

before a clear depth map image was visible.

The prototype is currently only able to

retrieve a visible depth map image (Fig. 3)

which shows the person in the scene in

different shades of black, white and grey.

Also, it is able to show how close or far

away the user is. The colour image that the

camera can produce is not as easy to

retrieve. There is a piece of sample code

that shows how to pull a colour image, but

instead of saving it, it is rendered using the

OpenGL libraries. These libraries can

render an image to be viewed on a Win

Forms application, but when registering it

to a website, which specifically needed a

source picture, it was not usable.

Results

The result of the presented work was a

development of an internet website

application that can successfully monitor

the users who are acting in front of the

camera(s), and that can also provide

controls for other possible applications.

The application runs in chrome on a PC

desktop. Fig. 4 shows the website, which

has the following features:

Figure 4: The web-enabled gesture recognition application

• Image of the camera output. At the top of

the screen, an image shows the scene that

the camera is currently seeing. It is a depth

map image which will show a gradient of

how close or far away the user is.

Journal of Software & Systems Development 8

__

Zenon Chaczko and Wael Alenazy (2016), Journal of Software & Systems Development,

DOI: 10.5171/2016. 557104

• Controls for the Image. There are a

number of controls that have been set up

for the image. The image selector allows

the choice of the colour image or depth

map image; however the colour image does

not currently work. Controls for the refresh

rate of the image. This can vary from 100

milliseconds, up to 10 seconds.

• Buttons to control a separate application.

These buttons consist of start, stop,

control1 and control2. These are

customisable buttons that can be hooked

into another application to offer a modicum

of control.

To allow the website to use these features,

it has some supporting infrastructure:

• Custom WCF Library. This library is

implemented in the website, as well as the

target application that the website will be

controlling. It contains the methods and

logic to use WCF in both applications.

• Camera Communication Console

program. This is the program that talks to

the camera and saves the image it is

viewing. When the console program is not

running, the image will not refresh

properly. And when the program is not

already running, navigation to the website

will initiate start-up.

By reviewing these features alongside the

requirements, this project has been

deemed a success.

Conclusion

To conclude, the IISU SDK is very useful

software to model and develop gesture

recognition applications. The IISU SDK

supports a few different camera models

and the supported cameras are being

updated and added to.

At present, the Kinect has still some version

issues with the third party drivers and

middleware such as the IISU to connect

with the Kinect. However, in the IISU

bulletin news it has been announced that

the next version of IISU being released will

have direct compatibility with the Xbox

Kinect.

Developing applications using the

Interactive Designer is easy to use and

provides many inputs that the camera

computes such as arm angles and whether

hands are open or closed. If there are any

issues with development with IISU, there

are help and support forums and a

ticketing system that can provide help.

Unfortunately as it is not a widely used

piece of software, the existing help and

support is limited, however response from

employees in the ticketing system or

emails, gives a fairly quick response.

References

1. Chaczko, Z. & Alenazy, W. (2014), 'The

extended technology acceptance model and

the design of the 21 st century classroom',

Computer Aided System Engineering

(APCASE), 2014 Asia-Pacific Conference on,

IEEE, pp. 117-21.

2. Chen, D.R., Chen, M.Y., Huang, T.C. & Hsu,

W.P. (2013), 'Developing a mobile learning

system in augmented reality context',

International Journal of Distributed Sensor

Networks, vol. 2013.

3. Dede, C. (2009), 'Immersive interfaces

for engagement and learning', science, vol.

323, no. 5910, pp.66-9.

4. Dunleavy, M., Dede, C. & Mitchell, R.

(2009), 'Affordances and limitations of

immersive participatory augmented reality

simulations for teaching and learning',

Journal of Science Education and

Technology, vol. 18, no. 1, pp. 7-22.

5. Erol, A., Bebis, G., Nicolescu, M., Boyle,

R.D. & Twombly, X. (2007), 'Vision-based

hand pose estimation: A review', Computer

Vision and Image Understanding, vol. 108,

no. 1, pp. 52-73.

6. Fengjun, G. & Shijie, C. (2010), 'Gesture

Recognition Techniques in Handwriting

Recognition Application', Frontiers in

Handwriting Recognition (ICFHR), 2010

International Conf. on, pp.142-7.

7. Montero, A., Zarraonandia, T., Aedo, I. &

Díaz, P. (2013), 'Uses of Augmented Reality

for Supporting Educational Presentations',

Advanced Learning Technologies (ICALT),

2013 IEEE 13th International Conference

on, IEEE, pp. 426-8.

9 Journal of Software & Systems Development

__

Zenon Chaczko and Wael Alenazy (2016), Journal of Software & Systems Development,

DOI: 10.5171/2016. 557104

8. Nickel, K. & Stiefelhagen, R. (2007),

'Visual recognition of pointing gestures for

human–robot interaction', Image and

Vision Computing, vol. 25, no. 12, pp. 1875-

84.

9. Prasad, S., Peddoju, S.K. & Ghosh, D.

(2013), 'Mobile augmented reality based

interactive teaching & learning system with

low computation approach', Computational

Intelligence in Control and Automation

(CICA), 2013 IEEE Symposium on, IEEE, pp.

97-103.

10. Remote Lab at UTS, (2015),

<http://www.uts.edu.au/about/faculty-

engineering-and-information-

technology/what-we-do/facilities-and-

services/remote>.

11. Sholtz, P. (2014), How To Make An

Augmented Reality Target Shooter Game

With OpenCV: Part 3/4, RAYWENDERLICH

TUTORIALS FOR DEVELOPERS &

GAMERS.SoftKinetic (2014),

<http://www.softkinetic.com>.

12. Wong, W. September 8, (2011),

'Electronic Design', vol. 2011, Natural User

Interface Employs Sensor Integration,

<http://electronicdesign.com/embedded/

natural-user-interface-employs-sensor-

integration>.

