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Abstract 

 

This paper shows the development of a non-invasive BCI system 

using brain signals from somatosensory cortex. The acquisition of 

signals was performed using one electrode cap in accordance 

with 10-20 system and using 3-channel EEG in order to command 

a motorized wheel chair without involvement of peripheral 

nerves and muscles. Two experiments were carried out with 

untrained volunteers performing imaginary two movements, and 

several aspects are evaluated, such as the method of selection 

and feature extraction, hit rates classification, application of a 

database for comparison, as well as the general evaluation of the 

system. Hit rates (average) of 74.9% were obtained from the 

three best volunteers of the experiment with two movements. In 



 

 

the experiment with the wheelchair, 65.7% hit rates (average) 

were obtained for two directions, respectively. 

 

Keywords: Brain-Computer Interface (BCI); 10-20 System; 

Electroencephalography; Classifier Learning Vector 

Quantization. 

 

 

 

 

 

 

 

 

 



 

 

Introduction 

 

About six decades after invention of EEG, studies have emerged 

using brain signals to control devices and this area became 

known as BCI (Brain-Computer Interface) or BMI (Brain-Machine 

Interface). Wolpaw et al (2002) mentioned that brain activity 

produces electrical signals that can be detected in a non-invasive 

or invasive way, and BCI systems can translate these signals into 

commands, which allow communication with devices without 

involvement of peripheral nerves and muscles. 

 

Typically non-invasive BCI systems use brain activity obtained 

from the scalp (usually using EEG) and are able to allow basic 

communication and control for people with severe 

neuromuscular disorders (Birbaumer et al (2003) and Sellers et 



 

 

al (2007)). Some studies with invasive BCI systems use records 

from neuronal action potential or local field potential directly in 

the cerebral cortex or near the surface- the vast majority of these 

studies is still restricted to monkeys (Chapin et al (1999), 

Wessberg et al (2000), Serruya et al (2002), Taylor et al (2002) 

Carmena et al (2003), Pesaran et al (2002), Leuthardt et al 

(2004) and Hochberg et al (2006), because they involve surgical 

techniques and clinical risks- the electrodes are implanted in the 

cerebral cortex for long periods and can cause infections and 

other injuries to the brain. In general, BCI system allows 

interaction of some subject with the external environment, 

through the conscious control of his thoughts and not by muscle 

contractions as, for example, inhuman-machine interfaces 

controlled or managed bymyoelectric signals (Sellers et al 

(2007)). In a BCI system, the data acquired by EEG should be 



 

 

processed in real time to be able to get signals for controlling 

devices. In general, BCI system is composed by brain signals 

acquisition and pre-processing, and extraction of significant 

features followed by their classification. The result of 

classification allows controlling signals from external devices 

(Kubler and Muller (2007)). In summary, any project involving 

BCI system requires an efficient signal processing that includes 

pre-processing, extraction, and classification steps.For example, 

Liangetal. (2006) emphasize the classification stage, including a 

good summary of linear methods, Markov chains, among others. 

Like any communication system or control, BCI system has inputs 

(e.g., the electrophysiological activity of the user), outputs (e.g., 

commands to external devices), components that convert 

input(s) into output(s) (signals processing), and protocol, which 



 

 

determines the start, end, and operation time (Wolpaw et al 

(2002)). 

 

Another characteristic found in BCI systems is that the user 

receives stimuli (visual, auditory or tactile) and/or performs 

mental tasks while their brain signals are captured and 

processed. According to the stimulus/tasks performed by the 

volunteer, a series of phenomena or behaviours extracted from 

EEG signals can be detected, such as the Slow Cortical Potentials 

(SCPs), Sensorimotor Rhythms (SMR), Event-related 

Potentials(ERP), and Visual Evoked Potentials (VEPs). Further 

details of these phenomena or behaviours can be found in Kubler 

and Muller (2007). 

 



 

 

It is known that, since the EEG discovery in 1930, certain events 

can block or desynchronizing normal brain activity in determined 

frequencies and these changes can be detected by analyzing the 

signal frequency (Pfurtscheller et al (1999)). As a consequence, 

events related to some phenomenon can also be represented by 

frequency changes in brain activity, or, in other words, can be 

represented by energy decrease or increase in a frequency band. 

Energy decrease in a frequency band is called ERD (Event-

Related Desynchronization) and elevation is called ERS (Event-

Related Synchronization). SMR is usually divided into two 

frequency bands, μ band (8-12 Hz) and β band (13-30 Hz), and 

are quantified in form of ERD or ERS.  

 

 



 

 

Many factors suggest that μ and/or β rhythms can be good signs 

to be used in BCI systems. They are associated with cortical areas 

more directly linked to brain motor activity (Wolpaw et al 

(2002)).  Furthermore, it was verified that the SMR occur both at 

the movement realization as in its imagination (McFarland et al 

(2003)), and may help people with severe disabilities to perform 

tasks only with the movements’ imagination, after receiving a 

proper training. The preparation and realization of imaginary 

movement is accompanied by ERD effect, while approximately 1s 

after the imagination task’s ending, the ERS effect occurs. In the 

case of imaginary movement of the hands, the ERD effect occurs 

with greater intensity on the contralateral side of imaginary 

movement, while the ERS effect occurs with greater intensity on 

the ipsilateral side of the movement (Pfurtscheller and Neuper 

(1997), Pfurtscheller and Neuper (2001) and McFarland (2008)).  



 

 

Considering the amount of current publications, it is possible to 

affirm there is a great interest in research involving BCI systems 

and other devices involving assistive technology. Therefore, to 

contribute to this area, this work presents the development of a 

non-invasive experimental BCI system, using EEG and an 

electrode cap to capture the brain signals of somatosensory 

cortex, thus allowing the analysis of Sensorimotor Rhythms 

(SMR).  

 

Based on analysis of brain signals (F3-P3 and F4-P4) commands 

are generated to move a motorized wheelchair. Two experiments 

were carried out during this work, evaluating aspects related to 

the method of selection and characteristics extraction, 

classification of hit rate, hit rate during the experiments, and 

overall evaluation of the developed system. In addition, the 



 

 

international database (BCI Competition II (2003)) was used, 

thus allowing a comparison of results obtained. 

 

Methods 

 

Equipment and Materials 

 

The proposed experimental BCI system is shown in Figure1. This 

system consists of an EEG, a head cap with tin electrodes (Jasper 

(1958)), elastic, special conductive gel made for EEG, a computer 

to generate visual stimuli, two data acquisition boards, and a 

computer for acquisition and processing EEG signals. 

 

 

 



 

 

 
 

Figure 1. Block Diagram of Proposed Experimental System 

 



 

 

In this study, two bipolar EEG channels were used to capture the 

brain signals from somatosensory cortexatF3-P3 and F4-P4 

locations. The analog gain was set to 20000. For analog-to-digital 

conversion, a National Instruments USB6008 board was used at a 

sampling rate of256Hz. Bio signals acquisition and processing are 

performed with Lab View 9.0 integrated with Matlab software.  

 

Basic Steps for Signal Processing    

 

The techniques used for processing digital signals are shown in 

this section. This processing can be divided into three basic steps 

discussed below, namely selection of specific parameters, 

features extraction, and classification.  

 

 



 

 

Selection of Specific Parameters 

 

Two analyzes were performed in this step: (1) determining the 

most relevant frequency bands for each volunteer and (2) 

verification over time the variation of bands energy of selected 

frequency in order to identify temporal localizations, where 

significant differences of energy occur in the somatosensory 

cortex region. The selected parameters are used in features 

extract stage, aiming to extract the most relevant features for 

each user, and consequently achieve the highest hit rate in the 

classification stage. 

 

Each individual may show EEG signs with specific frequency 

bands, both in μ band (8-13Hz) and β band (14-30Hz), and, 

therefore, to perform this process becomes indispensable. The 



 

 

method developed analyzes the μ band and β band separately by 

selecting the most relevant components and that form a 

frequency band with at least 3 components, such as 10 to 12 Hz. 

One relevant band is selected in μ band and other one in β band. 

The selection of bands is based on analysis of the relevance 

values of each frequency component. This method analyzes the 

components of μ and β zones separately, selecting the most 

relevant components, and forming a band with frequency of at 

least 3 components. Several tests were performed to validate this 

method of automatic selection of relevant bands. 

 

In this study, the method based on non-linear classifier LVQ 

(Kohonen (1990)) was used (100 replicates were performed LVQ 

algorithm. Studies showed that 100 repetitions presented a cost-

effective (good computational performance)). The system known 



 

 

as a Kohonen Network has a fee-forward structure with a single 

computational layer of neurons arranged in rows and columns. 

Each neuron is fully connected to all the source units in the input 

layer, for example, the outline of Figure 2. 

 

 

 



 

 

 
 

Figure 2. The Architecture a Self-Organizing Map (SOM): A 

One Dimensional Map 

 

The aim is to learn a feature map from the spatially continuous 

input space, in which our input vectors live, to the low 



 

 

dimensional spatially discrete output space, which is formed by 

arranging the computational neurons into a grid. The stages of 

the SOM algorithm that achieves this can be summarizes as 

follows:  

 

(a) Initialization: choose random values for the initial weight 

vectors wj;  

 

(b) Sampling: draw sample training input vector x from the 

input space;  

 

(c) Matching: find the winning neuron I(x) that has weight 

vector closest to the input vector; i.e.; the minimum value of  

;  



 

 

(d) Updating: apply the weight update equation 

, where  is a Gaussian 

neighborhood and  is the learning rate;  

 

(e) Continuation: keep returning to step 2 until the feature map 

stop changing. 
 

The using a SOM is to encode a large set of input vectors {x} by 

finding a smaller set of representatives or prototypes or coded-

book vectors {WI(x)} that provide a good approximation to the 

original input space. This is the basic idea of vector quantization 

theory, the motivation of which is dimensionality reduction or 

data compression. In effect, the error of the vector quantization 

approximation is the total squared distance: 

 



 

 

                                            (1) 
 

Between the input vectors {x} and their representatives {WI(x)}. 

We shall see that performing a gradient descent style 

minimization of D does lead to the SOM weight update algorithm, 

which confirms that it is generating the best possible discrete low 

dimensional approximation to the input space (as least assuming 

it does not get trapped in a local minimum of the error function).  

 

The LVQ is a supervised version of vector quantization that can 

be used when we labeled input data. This learning technique uses 

the class information to reposition the Voronoi vectors slightly (a 

vector quantizer with minimum encoding distortion is called a 

Voronoi quantizeros nearest-neighbour quantizer), so as to 



 

 

improve the quality of the classifier decision regions - it is a two 

stage process (see Figure 3). The first step is feature selection – 

the unsupervised identification of a reasonably small set of 

features in which the essencial information content of the input 

data is concentrad. The second step is the classifications where 

the feature domains are assigned to individual classes. The SOM 

algorithm provides a useful method for computing the Voronoi 

vectors (as weight vectors) in an unsupervised manner. 

 

 



 

 

 
 

Figure 3. Relationship between the SOM and LVQ 

 

The basic LVQ approach is quite intuitive. It is based on a 

standard trained SOM with input vectors {x} and weight/Voronoi 

vectors {wj}.The new factor is that the input data points have 

associated class information. This allows us to use the known 

classification labels of the inputs to find the best classification 

label for each wj, i.e., for each Voronoi cell. The basic LVQ 



 

 

algorithm is a straighforward method for shifting the Voronoi cell 

boundaries to result in better classification. It starts from the 

trained SOM with input vectors {x} and weight/Voronoi vectors 

{wj}, and uses the classification labels of the inputs to find the 

best classification label for each wj. The LVQ algorithm then 

checks the input classes against the Voronoi cell classes and 

moves the wj appropriately:  

 

(a) If input x and the associated Voronoi vector/weight wI(x) (i.e. 

the weight of the winning output node I(x)) have the same class 

label, then move them closer together by 

 as in the SOM algorithm (where 

is a learning rate that decreases with the number of 



 

 

iterations/epochs of training. In this way we get better 

classification than the SOM alone.);  

 

(b) If the input x and associated Voronoi vector/weight wI(x) have 

the different class labels, then move them apart by 

;  

 

(c) Voronoi vectors/weight wj corresponding to other input 

regions are left unchanged with . 

 

In the first step of this algorithm, the relevance average of each 

frequency component among used EEG channels is performed. In 

the band selection, parameters (maximum, minimum, and span) 

of all analyzed frequency components are used. These 



 

 

parameters are used to determine the thresholds used in the 

automatic selection method. 

 

After selecting the most relevant frequency bands for each 

volunteer, it becomes necessary to analyze the energy variation 

in each selected band. According to experiments conducted in 

this work, it is possible to increase the hit rate of the 

classification process up to 15%, by extracting features from 

temporal localizations, where there is a greater energy difference 

among the capture sites of the brain signals in the region of the 

somatosensory cortex during stimuli presentation. The method of 

bands energy (Band Power Method or BPM) was used for this 

evaluation (Schloegl et al (1997)) and this energy difference was 

analyzed using the Lateralization Index (LI). The LI is useful to 

evaluate the occurrence of ERD or ERS in contralateral side of the 



 

 

movement - effect called lateralization (Graimann and 

Pfurscheller (2006)). To facilitate the understanding of BPM 

method, Figure 4 shows a graphical example. In this example, 20 

tracks were used (random stimuli to the right or left side – see 

Figure 4 (a)) of an experiment conducted with G1. In this test, the 

volunteer should perform the imaginary movement of closing his 

hand to presented stimulus. 

 

 

 

 

 

 

 

 



 

 

 
 

Figure 4. Graphical Example of BP Method - G1 Volunteer 

Data 



 

 

The stimulus is presented to volunteer between 4-6s of each 

track. The Figure 4 (b) shows the raw EEG signal (channel F3-P3) 

of track number 16. In Figure 4 (c), band-pass filtering (fc = 8-12 

Hz, filter of 2nd order Butterworth type) is performed, and in 

Figure 4 (d) the filtered signal is squared, that is, the values of 

signal energy are obtained. In Figure 4 (e), the arithmetic mean of 

energy of all 20 tracks of this experiment is performed and finally 

in Figure 4 (f) the Relative Energy to the reference period is 

obtained. After approximately 500 ms of the stimulus 

disappearance (at 6.5s instant) elevation in ER occurs, i.e., the 

ERS effect occurs. 

 

 

 

 



 

 

Features Extraction 

 

This section shows the method used for feature extraction based 

on spectral parameters by quantifying the energy of a 

determined frequency band. The energy quantization of a 

determined frequency band is accomplished by following these 

steps: (1) selecting a frequency band using band-pass filtering; 

(2) raising the amplitude to square in order to obtain the energy 

of the selected frequency band; (3) Cutting a window of 1 s from 

the track in question; (4) compressing the number of samples of 

the cutting window at CR rate, obtaining y energy values 

according to Equation (2): 

 

                         (2) 



 

 

In which ta is the sampling rate in Hz, ct is the track length in s, 

and y is the number of desired samples. 

 

In this work, CR = 64 and y = 4 were selected for a sampling rate 

of 256 Hz. This means that the samples are compressed at a rate 

of 64 times (one energy value every 250ms) using the arithmetic 

mean as reduction method. In experiments performed with two 

EEG channels, 16 features (2 EEG channels x 2 frequency bands x 

4 energy values) are extracted and classified. Figure 5 (a) shows 

the normalized raw signal from a track (chosen at random – 

duration of 9s) of an experiment conducted during this work. 

Figure 5 (b) shows the same filtered signal between 8 and 12 Hz, 

and Figure 5 (c) shows the squared amplitude, obtaining energy. 

In Figure 5 (d), a window of 1 s is extracted; in this case, as 

example, the extraction is started at 4.25s instant. Figure 5 (e) 



 

 

shows the final step in the extraction process, making up the 

arithmetic average every 250 ms, resulting in 4 characteristics. 

 

 

 

 



 

 

 
 

Figure 5. Method of Features Extraction: (a) Normalized Raw 

Signal, (b) Band-Pass Filtering 8-12 Hz, (c) Squared 

Amplitude, (d) Window of 1 s Clipped of Signal and (e) 

Average Energy Every 250 ms 



 

 

Features Classification  

 

In general, the conversion of user's intention is performed at 

classification stage (expressed by features extracted from brain 

signals) into command signals for an output device, for example, 

a motorized wheelchair. In this work, the features classification is 

performed using Linear Discriminant Analysis method that is one 

method widely used in BCI systems (Blankertz et al (2007)). 

 

Experimental Protocol 

 

All tests were accompanied by a system operator, whose function 

was to put the electrodes cap on the volunteer, enter the 

conductive gel in the cap electrodes and connect all equipment to 

be used. Furthermore, the system operator guided the volunteers 



 

 

to the tasks to be performed; for example, he asked them to carry 

out some test tracks in order to become familiar with the 

experiment. All volunteers agreed to participate in the 

experiments. 

 

Experiment 1: Two Imaginary Movements 

 

In experiment 1,240 tracks for each volunteer are presented, 

divided into 3 sections of 80 tracks performed in different days 

or shifts. The total time for each section is approximately 20 

minutes. The specific parameters of each volunteer were 

obtained with data of the first 25 tracks of each section, and the 

data classification is made for the 55 remaining tracks. In this 

experiment, five healthy males were involved (R1, W1, B1, M1, 



 

 

and G1 volunteers) with a mean of (25.6 ± 9.1) years old, who did 

not have any contact with BCI experiments at lifelong.   

 

In each track, the volunteer receives a visual stimulus 

represented by an arrow (in 2D), indicating direction to the right 

or to the left side. During the presentation of this arrow, the 

volunteer must only imagine the closing movement of one hand 

(as if squeezing a ball) on the same side that the arrow points. 

The order of the arrows selection is completely at random, 

following a uniform distribution. The volunteers had not received 

any feedback during the experiment, i.e., there was no generation 

of commands to control an output device. Each track has a length 

of 9s, with a random interval from 2 to 5s with the following 

temporal order: 0-3s: reference period, the screen remains in 

blank; 3-4s: a symbol representing a cross appears on the screen, 



 

 

along with an audible warning ("beep" sound at a frequency of 

400Hz); 4-6s: 2D arrow appears indicating the side that the 

volunteer must imagine the closing movement of the hand; 6-9s: 

the post-movement period, screen in blank. 

 
Before the experiment, the volunteers performed around 10 to 

20 test tracks to be familiarized with the experiment. All 

volunteers were asked to keep always the maximum attention in 

performing the experiment. In this experiment, two EEG channels 

localized in F3-P3 and F4-P4 were used, 16 features on each track 

were extracted and classified, and the LI method for energy 

analysis was applied.  
 

 

 



 

 

Experiment 2: Interface with a Wheelchair 

 

In the experiment 2, the system interface used in the Experiment 

1 with an output device is performed, in which, commands are 

generated to move a motorized wheelchair. The volunteer 

performs the experiment tasks sitting in a wheelchair as 

illustrated in Figure 6. 

 

In experiment 2, 50 tracks are presented to the volunteer, and 

these data are used for classifier training and to obtain the 

specific parameters of the volunteer. Afterwards, the volunteer 

must complete a route of 7 predetermined positions for 3 times, 

with the minimum possible tracks. Only one volunteer (female, 

30 years old, L1 volunteer) participated in this experiment, and 

she had already participated in BCI experiments throughout this 



 

 

work. In the course of two directions, arrows to the right and 

forward are presented, and the volunteer should make the 

imaginary movement of the foot (front arrow) and right hand 

(right arrow). Table 1 shows the route order of 7 directions. 

 



 

 

 
 

Figure 6. Illustration of the Volunteer Sitting in a Wheelchair 

during the Experiment 2 



 

 

Table 1: Course Order of the Experiment 2 

 

Position Route of 2 

directions 

1 Front 

2 Front 

3 Front 

4 Right 

5 Right 

6 Front 

7 Right 

 

 



 

 

The stimuli presentation is exactly equal to that of Experiment 1, 

in which the classification and generation of command to move 

the chair are held shortly after the end of the corresponding 

track. In the course of two directions, the arrow to the left is not 

presented in both the training and the completion of the route. 

After presentation of 50 training tracks, the volunteer 

parameters are selected (procedure that takes about 5 minutes 

and is performed by the system operator) and then the 

presentation of the first series of corresponding route stimuli 

starts, and the chair will go in direction to the stimulus only if the 

classification result of the corresponding track is correct. 

Otherwise, the chair will remain standing in place, and the same 

stimulus will be presented to the volunteer at the next track. The 

process is repeated until the classification is correct. The idea is 

that the route is completed with the smallest possible number of 



 

 

tracks and consequently in the shortest time. At the end of the 

first series of the corresponding route stimuli, the chair is taken 

to the starting point of the route for performing the second and 

third series of the corresponding route. In this experiment, 3 EEG 

channels localized in F3-P3, Fz-Pz, and F4-P4 were used and 24 

features on each track were extracted and classified.  

 

Results 

 

Results of the Experiment 1 

 

Five volunteers (R1, G1, M1, B1, and W1) underwent three 

sections of 80 tracks, except the first section of B1 volunteer with 

60 tracks. It was noted that for all volunteers α is the most 

relevant frequency band, and, therefore, it was selected for 



 

 

carrying out the analysis of energy for determining the window 

localization of the features extraction. The limits of α-band (8-13 

Hz) are selected with the automatic method presented in this 

work.  

 

The Figure 7 shows the graphical result of RE (or ER) of the 

stimuli to right, left, and LI from the section in which the best 

classification result for each volunteer was obtained. It is possible 

to note that R1 volunteer shows the typical behavior of SMR, in 

which the ERD effect occurs more strongly on the contralateral 

side to the movement, and in this case it is expected that this 

volunteer get better hit rates than the remaining volunteers. 

 

 

 



 

 

 
 

Figure 7. Graphical Results of Energy Analysis of R1 

Volunteer, Section 2 (a) RE Stimulus to the Right, (b) RE 

Stimulus to the Left and (c) LI 



 

 

The specific parameters of each volunteer were also adjusted 

manually (by visual analysis) as other works (Haselsteiner and 

Pfurtscheller (2000) and Coyle et al (2005)) to compare the 

results with parameters selected automatically. Table 2 shows 

the average hit rates for each volunteer as well as the general hit 

rate. Taking into account the results obtained by manual 

adjustment, the overall hit rate found for the right stimuli was 

72.3% and 70.5% for the left ones. 

 

 

 

 

 

 

 



 

 

Table 2: Hit Rate Average for Each Volunteer and Overall 

Average 

 
Volunteer Hit rate using 

the automatic 

method (%) 

Hit rate using the 

manual adjustment 

(%) 

Difference 

(%) 

Average R1 67.3 77.6 10.3 

Average G1 64.8 72.7 7.90 

Average M1 58.5 67.3 8.80 

Average B1 52.3 63.0 10.7 

Average W1 56.3 74.5 18.2 

General 

Average 

59.9 71.0 11.1 

 

 



 

 

Results Using BCI Competition II, Data Set III  

 

In this study, data from the BCI competition II, data set III were 

used in order to apply the method employed in this work to a 

database already known, allowing comparison of results obtained 

by other competition participants. Table 3 shows the found hit 

rates, using both the automatic method for selecting parameters 

such as performing manual parameters adjustment, as well as the 

hit rates average. 

 

 

 

 

 

 



 

 

Table 3: Hit Rates Using Selected Parameters with 

Automated Method or Adjusted Manually 

 

Volunteer Section Hit rate using 

the automatic 

method (%) 

Hit rate using 

the manual 

adjustment (%) 

BCI1 1 76.4 89.1 

BCI1 2 72.7 87.3 

General Average 74.6 88.2 

 

The hit rates of volunteer from BCI competition were higher than 

those found in experiment 1 conducted in this work. The graphs 

used in the specific parameters selection already indicated that 

high rates could be found, because this volunteer can control his 



 

 

brain rhythm, enabling high differentiation between the two 

classes as shown by graphs of energy analysis. Most likely this 

volunteer was very well trained to perform the experiment, and 

the database was generated in a controlled environment. The 

results obtained with the method of this study were very close to 

the best results obtained by other researchers; the first five 

placed in the competition found hit rates between 82.9 and 

89.3%[19], demonstrating the functionality of this work method. 

 

Results of Experiment 2 

 

One volunteer (L1) participated in the experiment. Results are 

presented and discussed below. Table 4 shows the hit rates found 

in each series of the route of 7 positions held with the wheelchair. 

 



 

 

Table 4: Hit Rates Found in Each Series of Experiment 3 

 
Volunteer Serie Hit ratechair2directions (%) 

L1 1 70.0 

L1 2 63.3 

L1 3 63.3 

Average 65.7 

 

Discussion about the Experiments Results 

 

For example, in Experiment 1, maximum hit rate of 83.6% was 

found; other's papers (Schloegl et al (1997), Haselsteoner and 

Pfurtscheller (2000) and Coyle et al (2005)) report some results 

up to 90.0%, but in this work 74.9% of hit rate was found, 

considering the average of the 3 best volunteers of the 



 

 

Experiment 1, that is a result compatible to one reported by 

Pfurtscheller et al. (2001). It is very important to mention that 

there is not feedback or control on the imaginary tasks 

performed by volunteers, and there is no way of knowing if the 

volunteer performed the task correctly, if he was distracted, or if 

he was physically or mentally tired. Furthermore, the location of 

this work tests had a lot of noise outside (room located next to a 

busy street) that might distract the volunteer, and, therefore, it is 

not a controlled environment. This fact can be considered as a 

positive point, because the environmental conditions of the 

experiments are close to real life. 

 

Another very important point is the question of the volunteer 

himself. The comparison made with the data of BCI competition II 

leave no doubt on this point, by which an average percentage of 



 

 

88.2% hit rate was found, a percentage very close to the best 

result of the competition. This proves that the method employed 

in this paper works and it is possible to achieve high hit rates. 

Results found in the selection of specific parameters of volunteer 

from BCI competition II, data set III show an excellent 

performance of SMRs of this volunteer, i.e., with frequency bands 

very well defined. This is most likely linked to an extensive 

training carried out with this volunteer. All volunteers who 

participated in this study did not have any experience with BCI 

experiments and only some of them showed the expected SMRs 

behavior in accordance with the experiment temporization, and 

thus may have presented results below expectations. 

With respect to methods of selecting specific parameters used in 

this study, better results were found when the manual 

adjustment of parameters were performed, determined by the 



 

 

system operator/expert. Automatic methods still cannot replace 

the expert, according to results found in this work and others 

(Schloegl et al (1997), Haselsteoner and Pfurtscheller (2000) and 

Coyle et al (2005)). Using automatic methods introduced in this 

work, worse results were found compared to manual adjustment 

(difference of 11.1% on average hit rate in Experiment 1).  

 

Finally, the results from Experiment 2 were consistent with the 

results obtained in this work. In this experiment, it was noted 

that feedback to the user is an important factor for the volunteer 

to keep attention on the experiment, and consequently improve 

the hit rate. 

 

 

 



 

 

Conclusions 

 

The proposed system had as main goal to develop a 

brain/computer interface based on the achievement of an 

imaginary volunteer movements, in which their brain signals in 

the region of the somatosensory cortex are acquired by using 

EEG with 3 channels, performing a series of tests for the system 

to command output devices. Results obtained in this work are 

close to those found in the literature as well as to interface with a 

motorized wheelchair with an experimental portable and low 

cost system, controlled only through brain signals captured by 

EEG. It is very important to mention that all tests were performed 

in uncontrolled environment, with portable and low cost 

equipment, thus enabling a future interface with real-life 



 

 

situations, since our research group believes to be possible the 

development of BCI systems applicable to everyday life. 

 

It was noted that not all volunteers behaved as expected in their 

SMRs, indicating that the system needs to be adapted at 

maximum to user, in order to obtain the best possible results. The 

proposed method showed good results in all experiments, even 

when tested with BCI competition database, proving to be a 

simple and intuitive method and highly adaptable to the user. 
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