
IBIMA Publishing

Communications of the IBIMA

http://www.ibimapublishing.com/journals/CIBIMA/cibima.html

Vol. 2010 (2010), Article ID 749128, 16 pages

DOI: 10.5171/2010.749128

Copyright © 2010 Hatem BEN STA. This is an open access article distributed under the CreativeCommons

Attribution License unported 3.0, which permits unrestricted use, distribution, and reproduction in any

medium, provided that original work is properly cited. Contact author: Hatem BEN STA, email:

Hatem.Bensta@planet.tn

Elaboration of A Process for Mapping

between Ontology Concepts and

Objects Model Concepts

Hatem BEN STA

University Of Tunis at El Manar, Tunis, Tunisia

Abstract:

The principal idea of the framework in this paper is to use ontologies to convert a problem

domain text description into an object model. The object model of a system consists of objects,

identified from the text description and structural linkages corresponding to existing or

established relationships. The ontologies provide metadata schemas, offering a controlled

vocabulary of concepts. At the center of both object models and ontologies are objects within a

given problem domain. The difference is that while the object model should contain explicitly

shown structural dependencies between objects in a system, including their properties,

relationships, events and processes, the ontologies are based on related terms only. On the

other hand, the object model refers to the collections of concepts used to describe the generic

characteristics of objects in object-oriented languages. Because ontology is accepted as a

formal, explicit specification of a shared conceptualization, we can naturally link ontologies

with object models, which represent a system-oriented map of related objects, described as

Abstract Data Types (ADTs). This paper addresses ontologies as a basis of a complete

methodology for object modeling, including available tools, particularly CORPORUM

OntoExtract and VisualText, which can help the conversion process. This paper describes how

the developers can use this framework and implement it on the base of an illustrative example.

Keywords: object model, ontologies, class model, ADT.

__

1. Introduction:

Ontology is a specification of a

representational vocabulary for a shared

domain of discourse: definitions of classes,

relations, functions, and other objects as

mentioned by Gruber (1993) or, more

generally, a specification of

conceptualization and also mentioned by

Gruber (1994). Semantic Web uses

ontologies as a tool for easy integration and

usage of content by building a semi-

structured data model. To solve the

problem of heterogeneity in developing

software applications, there is a need for

specific descriptions of all kinds of

concepts, for example, classes (general

things), the relationships that can exist

among them, and their properties (or

attributes) in the draft of Helfin et al.

(2002). Ontologies described syntactically

on the basis of languages such as

eXtensible Markup Language (XML), XML

Schema, Resource Description Framework

(RDF), and RDF Schema (RDFS) can be

successfully used for this purpose.

Object orientation is a commonly accepted

paradigm in software engineering for the

last few decades. At the initial analysis

phase, identifying the right objects, which

are vital to the system’s functionality,

Communications of the IBIMA 2

seems to be the most difficult task in the

whole development process, from both

theoretical and practical point of view.

Object-oriented software development is

well supported by a huge number of

working methods, techniques, and tools,

except for this starting point - object

identification and building the related

system object model. Framework for

converting the text description of system

problem domain and respective functional

requirement specifications into an object

model is usually left to the intuition and

experience of developers (system

analysts). One commonly accepted rule is,

“If an object fits within the context of the

system’s responsibilities, then include it in

the system.” However, since the members

of a development team are likely to have

different views on many points, serious

communication problems may occur

during the later phases of the software

development process. Recently there has

been great research interest in applying

ontologies for solving this "language

ambiguity problem" as either an ontology-

driven or ontology-based approach in the

paper of Deridder et al. (1999). This is

especially true for object-oriented software

engineering, mainly because of the

similarity in the principles of the two

paradigms. More over, the object systems

similar to ontologies, which represent

conceptualized analysis of a given domain,

can be easily reused for different

applications as cited by Swartout (1999).

Representation of objects as Abstract Data

Types (ADTs) is of primary importance in

developing object-oriented software

because it is actually a process of software

implementation of ADTs. Any ADT is a

named set of attributes, which show the

characteristics of and formalize the

relationships between objects and methods

(operations, functions) for putting into

effect the behavior of objects, making the

system functional enough to be of practical

use. Building an accurate, correct and

objectively well-defined object model

containing objects, represented as ADTs, is

the basis for successful development of an

object-oriented software system

mentioned by Weiss (1993) and Manola

(1999). The basic idea is that the

implementation of ADTs as a code allows

all working objects (instances of classes) to

have one and the same behavior, which can

be changed dynamically in a centralized

manner for higher efficiency and

effectiveness. Objects are transformed

during the software development process

from “real things” to concepts, and finally

to Abstract Data Types, as shown in Figure

1.

Figure 1 Conceptualization and ADTs

Real Thing MO-model
<rdfs:subClassOf rdf:resource="http://web.mit.edu#Top" />
 <rdfs:subClassOf rdf:resource="

Ontological model
f-model

Full matrix model

Abstract Data Type

stu co app the app sup fac s ta f m e dep ex a r eq res deg pe r te r dea righ p ro ow the the doc doc app fac s ta f sen ful l fu ll fi na gen exa in te ora l doc stud dep

O1 O2 O3 O4 O5 O6 O7 O8 O9O10O11O 12O13O14O15 O16O17O18O19O20 O21O22O23O24O25 O26O27O28O29O30O 31O32O33O34 O35O36 O37 O38 weigh t

studen tO1
� �

O1 2

comm itteeO2
�

O2 1

appr ova lO3
� � � � �

O3 5

thesis O4
� � � � � � � � � �

O4 10

appl ica tionO5
� �

O5 2

supe rvis orO6 � O6 1

facu ltyO7
�

O7 1

staff O8
�

O8 1

memberO9
� �

O9 2

depa rtmen tO10
� � �

O10 3

exam inationO11
� �

O11 2

requ irementO12
�

O12 1

res ea rchO13
�

O13 1

degr eeO14
� � � �

O14 4

pe rmissionO15
� �

O15 2

te rm O16 � O16 1

deanO17
� � � �

O17 4

right O18
� � �

O18 3

proposa lO19
�

O19 1

own O20
� � �

O20 3

thesiO21
� � � � � �

O21 6

thesiO22
� �

O22 2

doct O23
� � � � � � � � � � � � � �

O23 14

doct O24
� �

O24 2

appr O25 � � O25 2

facu lO26
� � �

O26 3

staff O27
� � �

O27 3

sen i O28
� � �

O28 3

fu ll O29
� �

O29 2

fu ll _t O30
� � � �

O30 4

fina l O31
� � � �

O31 4

geneO32
� � � �

O32 4

exa O33
� � �

O33 3

in te ll O34 � � � O34 3

ora l_ O35 � � � O35 3

doct O36
� �

O36 2

stud O37
� �

O37 2

depaO38
� � �

O38 3

O1 O2 O3 O4 O5 O6 O 7 O8 O9 O10 O11O12O13O14O15 O16O17O18O19O20 O21O22O23O24O25O 26O27O28O29 O30O31O32O33O34 O35O36O37 O 38

STUDENT
- Attributes with their types
- Behavior (methods,
operations, functions)

STUDENT
- Person who is studying
in an academic system

3 Communications of the IBIMA

The framework described in this paper, is based on eight different models, only two of which,

namely the text description model (T-model) and class (object) model (C-model), are included

in the classical object-oriented software development process. The rest of the models used

represent specific analysis work, which the developers should do, to get benefit from using

ontologies for semi-formal identification of objects, which are to be responsible for the system

functionality, and their respective ADTs.

The basic idea is to ensure suitable transformation of the models from one to another using

respective procedures and tools, which can be considered as potential elements for integrating

ontologies into CASE tools for object-oriented systems. The paper is structured as follows:

Section 2 introduces the models in general and describes the overall procedure for their

transformation; Section 3 is dedicated to a more detailed description of the models as well as to

discussion on the techniques and tools, which can be practically used for model transformation.

An illustrative example of a part of the information system for the domain of academic

management is used throughout the paper to support the explanations; finally, section 3

summarizes the proposed approach and highlights direction for future work.

2. Overview of the Framework:

Our framework is based on transformation of models. Models are inseparable and one of the

most significant parts of any methodology. They help developers to better understand complex

tasks and represent in a simpler way the work they should do to solve those tasks. Object-

oriented analysis of a system under development is a good example of such a complex task. The

complexity stems from the fact that in object-oriented development everything is based on

objects but their identification in a given problem domain is completely left to the intuition of

the developer. All that he/she has as a starting point is the text description of the problem

domain, which is itself an extended model of the usually very general and ambiguous initial

user requirements. Following the existing practice we accept this text description (T-model) as

the available model, which serves as a starting point of our transformation process. According

to the object-oriented software development methodology the analysis work on the T-model

leads to two major deliverables: functional specification of the system, expressed as either text

or graphically as Use Case diagrams and the object (class) model (we call it C-model). The

ultimate goal of the developer's efforts is actually the creation of the C-model. This is so because

the objects included the C-model should contain the complete information necessary for the

next phases of design and implementation of the software system.

In other words the objects should be represented as ADTs - ready for design and

implementation software modules. It is clear now the already mentioned problem with

"language ambiguity" - different interpretations of the T-model, without any formal support of

the choice of participating objects, would lead to creating C-models, which are quite probably

inconsistent, incomplete or inefficient for the further steps of design and implementation. We

believe that using ontology as a tool of conceptualization working on the T-model can make (if

not fully formal at least) semi-formal the process of creating the C-model and in this way help

developers in this complex and imprecise task. This is the major motivation of our work

described briefly in this paper

.

Communications of the IBIMA 4

Figure 2 Framework Models for converting a text description into an object model

Figure 2 shows the basic idea of the

proposed framework, models used and

transformation process on them. The

starting point of the transformation is the

T-model, which represents a concise

description of the problem domain, where

the software system under development

will work, written in a natural language, in

our case English. If not available the T-

model is a deliverable from a system

analyst's work on the general user

requirements for the system functionality.

The presumption is that this problem

domain description contains the main

objects, which will participate in ensuring

that functionality. Of course, at this level

the objects are represented by their natural

names only and as such are very far from

the form we need to reach - represented as

ADTs. To help this process we refer to a

tool of conceptualization - an ontological

engine, which applied on the T-model

generates an ontological description (O-

model) of the problem domain at hand.

We use the fact here that any ontology is a

systematic description of concepts

(objects) in a given domain of interest

along with expressed relationships

between all or part of them. This is actually

the crossroads between the object-oriented

and ontology-based paradigms. The O-

model is a straightforward and practically

useful source of information for identifying

the participating objects. We use this

information to build a so called Full Matrix

model (Mf-model), which represents in a

simple form those objects as well as the

linkages (relationships) between them.

However, it is worth noting that the

processing of the Mf-model is semi-formal

in nature. This means that at this phase the

developer should take important decisions

about which objects could be considered as

basic ADTs and which, and where, could

play a role of attributes of other ADTs. The

idea is simple but not very easy for

implementation - to reduce the full object

matrix to a matrix (we call this model Mr-

Model), which contains only the basic

objects represented later as ADTs

containing other ADTs as attributes. As was

mentioned, the implementation is not very

easy because we need more information

here, which relates to expected

functionality of participating objects. This

information, however, is available or can be

extracted from the Use Case model of the

system under development. Also

mentioned was that the Use Case model is

another basic deliverable from the system

T-model
.........
.........
. The
doctoral
student
must
normally
have
........
Text
description
model

O-model
<rdfs:subC
lassOf
rdf:resourc
e="http://
web.mit.e
du#Top"
/>

<rdfs:su
bClassO
f
rdf:reso
urce="

Ontologic

Mf-model

Full matrix
model

stu co app the appsup fac staf me depexa req res deg per ter dea righ pro ow the the doc doc app fac staf sen ful l full fi na gen exa inte

O1 O2 O3 O4 O5 O6 O7 O8 O9O10O11O12O13O14O15O16O17O18O19O20O21O22O23O24O25O26O27O28O29O30O31O32O33O34

studentO1
�

committeeO2

approvalO3
� � � � �

thesis O4
� � � � � � � � �

applicationO5
� �

supervisorO6 �

facultyO7
�

staff O8
�

memberO9
� �

departmentO10
� �

examinationO11
�

requirementO12
�

researchO13
�

degreeO14
� � � �

permissionO15
� �

term O16 �

deanO17
� � � �

right O18
� � �

proposalO19
�

own O20
� � �

thesiO21
� � � � � �

thesiO22
� �

doct O23
� � � � � � � � � � � � �

doct O24
�

appr O25
� �

faculO26
� � �

staff O27
� � �

seni O28
� � �

full O29
�

full_tO30
� � � �

final O31
� � � �

geneO32
� � � �

exa O33
� � �

intellO34
� � �

oral_O35
� � �

doct O36
� �

stud O37
� �

depaO38
� � �

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10O11O12O13O14O15O16O17O18O19O20O21O22O23O24O25O26O27O28O29O30O31O32O33O34

Mr-model

Reduced
matrix
model

appr

oval

thes

is

appl

icat i

sup

ervi

dep

artm

exa

min

degr

ee

per

m is

dea

n
right

thes

is_p

thes

is_r

doct

oral

staf f

_me

full_

t ime

f inal

_ter

exa

m in

intel

lect

dep

artm
o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14 o15 o16 o17 o18 o19

approval o1 � � � � �

thesis o2 � � � � � � � �

applicat ion o3 � �

supervi sor o4 � � �

department o5 � � �

examinat ion o6 �

degree o7 � � � �

permission o8 � �

dean o9 � � � �

right o10 � � �

thesis_proposal o11 � � � � �

thesis_research o12 �

doctoral_student o13 � � � � � � � � � �

staf f_member o14 � � �

full_time_resident o15 � � � �

f inal_term o16 � � � �

examinat ion_requirement o17 � � � � �

i ntellectual_property o18 � � �

department_committee o19 � � � �

5 8 2 3 3 1 4 2 4 3 4 1 10 3 4 4 5 3 4weight

C-model

Object (class)

XML-model

<>…….<>
 <…….

……>

XML object
model

DF-model

Data &

data

functio
n

UO-model

Use case
Ontological

1

2

3

5

4

6 7 8

5 Communications of the IBIMA

analyst's work on the user requirements,

which practically consists of a number of

Use Cases decomposing the main Use Case

of the system. Note that at this phase we

can also use the already generated problem

domain ontology. Along with showing the

concepts hierarchy (possible objects in the

system) the ontologies also analyze the

verbs linking those concepts, which can be

considered as functions (operations)

belonging to respective objects.

We actually use the text descriptions of

different Use Cases to extract different

functionality of the system by the

ontological engine and as a result we get

the so called Use Case Ontological model

(UO-model). We show later in section 3

that the functionality, expressed by the UO-

model, can be used successfully at this

particular phase along with the ontological

information about the objects in the Mf-

model to create a Data and Function model

(DF-model). As a matter of principle DF-

model can be used for each of the objects in

the Df-model but this would lead to a high

degree of redundancy and quite

complicated matrix presentation even for

relatively simple T-models. To avoid this

we propose using so called business object

patterns, which can be a result from

ontology-based analysis. The idea is to use

ontological libraries existing recently for a

great number of application domains and

to rely on the ontological description of the

concepts (objects), which according to the

developer's decision have the highest

degree of likelihood of being, selected as

basic objects in the system. This will allow

for significant reduction of the number of

possible objects in the Df-model, or we can

transform it to the Mr-model.

We assume that this model contains all the

necessary information for building the C-

model, which is actually the goal of this

first phase of analysis object-oriented

software systems. The representation of

the C-model is significantly different from

Mr-model however, as far as the former

shows not only the object hierarchy but the

objects' structure as well. In other words,

the C-model is a model representing ADTs.

The last model, the XML-model is optional

but can be very important in practice

because it allows the C-model to be

published on the Web in a unified (XML-

based) format supporting in this way the

collaborative work, which is a commonly

accepted technology nowadays.

Finally, an interesting question may arise

here. Do the models proposed in this

framework replace or ignore the well

known and widely used in practice models

applied to the analysis of object-oriented

systems? The answer is certainly not. All

models, such as the information model,

state model, process model, functional

model, etc,, along with their accompanying

methods, techniques and tools (for

example those included in Objecteering

CASE tools) remain absolutely necessary

for completing the phase of object-oriented

analysis. More over, all of them are created

to be applied on the object model of the

system under development and therefore,

they will use the basic deliverable of the

transformation process, shown above.

What we have proposed is a semi-formal

procedure for converting a text description

of a given problem domain into an object

model, which should be considered as a

basis for further analysis work.

Identification of objects and representing

them as ADTs using ontologies is the major

objective and achievement of the proposed

approach.

3. The models used:

In this section we will briefly show the

foundation, role and structure of the

models used in the transformation process,

explained generally in section 2. In

addition, we will show some of the tools,

mainly the ontological ones, which can be

used for implementing the models. One and

the same example - a part of a university

information system regarding PhD

students - is used as an illustration where

needed.

3.1 T-model: Text description model:

The T-model or text description of a

problem domain model that we were

working on is an English text description of

a part of a specific problem domain, shown

on the left side of Figure 3.

Communications of the IBIMA 6

Figure 3 Text description model

This text is represented as an ontology

description after processing by an

ontological engine tool in our case

CORPORUM OntoExtract as mentioned by

Engles (2001). It is a Web-based version of

CORPORUM, which is able to extract

ontologies and represent them in

XML/RDF/OIL (default in RDF schema) and

also to communicate with and negotiate the

final format of the to-be-submitted

ontology extracted from a specific text as

cited by Engles (2001). This tool can

interpret text, in the sense that it builds

ontologies that reflect world concepts as

the user of the system sees and expresses

them. So at this point in the process, the

text is automatically processed and

converted into ontologies, which can be

done on line.

3.2 O-model: Ontological model

The ontology described in RDFS defines the

names and relations of the extracted

concepts, or object names. RDFS provides a

mechanism to define domain-specific

properties and classes of resources to

which developers may apply those

properties as cited by Klein (2001). More

specifically, an ontology description is

recognizable as an ontology language.

Classes are specified with <rdfs: class>.

Subclasses and subproperties are specified

using <rdfs: subClassOf> and <rdfs:

subPropertyOf> (the top class defined in

the schema is “Resource”) respectively.

When a class is a subclass of several

superclasses, this is interpreted as a

conjunction of superclasses in a research

study by Gil and Ratnakar (2002).

CORPORUM OntoExtract basically

generates taxonomies that represent

classes, subclasses, and instances. A class

described in the text may also be defined as

a subclass of the universal “rdf: resource” if

no more information about the class can be

found. A class may also be defined as a

subclass of other classes if evidence is

found that the class is indeed a subclass. A

subclass relationship found by this tool is

based on information about the term in a

research study by Engles and Bremdal and

Jones (2001).

An important category that is exported by

the CORPORUM OntoExtract engine is the

cross-taxonomic relations. While a typical

ontology often represents taxonomy,

<isRelated> refers to cross-taxonomic links

that may exist within a domain and, if

represented, can make a difference in

finding needed information based on

context descriptions. In short, it can

identify the possible relations between

objects. For example, in the box on the

right side of Figure 3, the class

“doctoral_student” has certain relations

with other classes, for instance, “thesis”,

“degree”, “right”, etc.

3.3 Mf-model: Full matrix model

The O-model describes only the type

(object) name and provides relations

“The doctoral student must
normally have completed the
general examination requirement
for the degree. The doctoral
student devoted full time to the
thesis research. When doctoral
students held the rights to
intellectual property which
contained in their own thesis.”

- <rdf:Description rdf:about="http://www.isi.rnu.tn#doctoral_student">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"
/>
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class" />
 <rdf:type rdf:resource="http://ontoserver.cognit.no/otk_rdf#Concept" />
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-
schema#Resource" />
 <rdfs:subClassOf rdf:resource="http://www.isi.rnu.tn#Top" />
 <rdfs:subClassOf rdf:resource="http://www.isi.rnu.tn#MISC" />
 <rdfs:subClassOf rdf:resource="http://www.isi.rnu.tn#doctoral_student" />
 <oe:relatedTo rdf:resource="http://www.isi.rnu.tn#thesis" />
 <oe:relatedTo rdf:resource="http://www.isi.rnu.tn#degree" />
 <oe:relatedTo rdf:resource="http://www.isi.rnu.tn#right " />
 <oe:relatedTo rdf:resource="http://www.isi.rnu.tn#application" />
 <oe:relatedTo rdf:resource="http://www.isi.rnu.tn#dean" />
……….

7 Communications of the IBIMA

between possible objects. However, this

model is in a form difficult to understand

and work with identified objects. That is

why we use the RDFS description as an

input to create a simple matrix-based

model, which can serve as an intermediate

model. It contains all identified objects,

approved by the developer and allows easy

manipulation on this full set of objects. This

is the reason to call this mode a full matrix

model (Mf-model).

The relationships between objects in the

system can be represented as simple

mapping as shown in Figure 4 below.

Generally speaking, we can always define

two sets of k and n objects (k ≠ n in the

common case) in a system between

elements where relationships exist or can

be established. If the objects are numbered

differently each X in the table of Figure4

will represent those relationships.

Figure 4 Example of relationships between objects

Based on the above general considerations,

we can build a full matrix as depicted in

Figure 5 to show every relationship that

occurs between already identified objects.

Figure 5 Full matrix model (Mf-model)

 O1 O2 .. Ok

O1 X X X

O2 X X X

.. X

On X X

Object set
O1

O2
.
.Ok

Object set
 O1

 O2
 .
 On

s tu co app the app sup fa c s ta f m e dep exa req re s deg pe r te r dea r ig h p ro ow the the doc doc app fa c s ta f s en fu ll fu ll f in a gen exa in te o ra l d o c s tud dep

O 1 O 2 O 3 O 4 O 5 O 6 O 7 O 8 O 9 O 10 O 11 O 12 O 13 O 14 O 15 O 16 O 17 O 18 O 19 O 20 O 21 O 22 O 23 O 24 O 25 O 26 O 27 O 28 O 29 O 30 O 31 O 32 O 33 O 34 O 35 O 36 O 37 O 38 w e igh t

s tu den tO 1
� �

O 1 2

com m itte eO 2
�

O 2 1

app ro va lO 3
� � � � �

O 3 5

thes is O 4
� � � � � � � � � �

O 4 10

app lic a tio nO 5
� �

O 5 2

supe rv iso rO 6
�

O 6 1

fa cu ltyO 7
�

O 7 1

s ta ff O 8
�

O 8 1

m em be rO 9
� �

O 9 2

depa rtm en tO 10
� � �

O 10 3

exam ina tio nO 11
� �

O 11 2

requ irem en tO 12
�

O 12 1

re sea rc hO 13
�

O 13 1

deg reeO 14
� � � �

O 14 4

pe rm is s io nO 15
� �

O 15 2

te rm O 16
�

O 16 1

deanO 17
� � � �

O 17 4

r ig h t O 18
� � �

O 18 3

p roposa lO 19
�

O 19 1

own O 20
� � �

O 20 3

thes i O 21
� � � � � �

O 21 6

thes i O 22
� �

O 22 2

doc t O 23
� � � � � � � � � � � � � �

O 23 14

doc t O 24
� �

O 24 2

app r O 25
� �

O 25 2

fa cu l O 26
� � �

O 26 3

s ta ff O 27
� � �

O 27 3

sen i O 28
� � �

O 28 3

fu ll O 29
� �

O 29 2

fu ll_ t O 30
� � � �

O 30 4

f in a l O 31
� � � �

O 31 4

geneO 32
� � � �

O 32 4

exa O 33
� � �

O 33 3

in te ll O 34
� � �

O 34 3

o ra l_ O 35
� � �

O 35 3

doc t O 36
� �

O 36 2

s tud O 37
� �

O 37 2

depaO 38
� � �

O 38 3

O 1 O 2 O 3 O 4 O 5 O 6 O 7 O 8 O 9 O 10 O 11 O 12 O 13 O 14 O 15 O 16 O 17 O 18 O 19 O 20 O 21 O 22 O 23 O 24 O 25 O 26 O 27 O 28 O 29 O 30 O 31 O 32 O 33 O 34 O 35 O 36 O 37 O 38

Communications of the IBIMA 8

The total number of relationships an object

has with other objects is called the weight

of that particular object. It determines how

many relationships one object has to other

objects participating in this problem

domain. One may infer that higher is the

weight the higher the relevance of that

object in the domain or, in other words, the

higher the likelihood is that this particular

object can be considered as a separate ADT

in the software system. Following

heuristics from previous experience we can

define here some quantitative

characteristics of the weight as a

parameter, for example it’s minimum, from

which an object may be considered as a

separate one. This can significantly help the

developer to identify the basic objects in

the system, although his/her decision

making is still necessary. This is actually

the semi-formal nature of the approach

proposed in this paper.

3.4 UO-model: Use Case Ontological model

It was mentioned already in section 2 that

the information from Mf-model, although

useful, is perhaps redundant and certainly

far from complete. Thanks to the

ontological analysis the system analyst may

have information about the possible

objects in terms of names and partially as

their attributes (other objects) but has no

any information about the system behavior

of objects. This means that at this phase we

cannot talk about ADTs. Obviously,

additional information is necessary related

to system functionality, in which different

objects are involved. Such information is of

vital importance for identifying the

complete contents of objects as data and

behavior (objects' functions, operations),

which are fundamental elements of the

object model in a research study by

Batanov and Arch-int (2003). Moreover,

considering system functionality at this

early stage of analysis may help the system

analyst to define more precisely the basic

objects in the system, to add new objects or

to remove/replace already identified

objects, which are not important for any of

the system functions. This is the place

where we should turn our attention to the

Use Case modeling.

Use Case Modeling is the process of

identifying and modeling business events,

who/what initiates them and how the

system responds to them. Use cases

capture requirements from the perspective

of how the actor will actually use the

system, in other words each of them

describes a given functionality of the

system as mentioned by Bennett et al.

(1999). Any Use Case can be represented

either graphically (as a Use Case diagram)

or as a text description. We use the

functionality text description in order to

apply the same ontology-based approach

for creating the O-model (see Figure6 for

clarifying the difference between Use Case

diagram, Use Case text description and

functionality text description). In this

situation, however, another ontological

engine, VisualText is used as a tool.

Figure 6 Use case diagram, use case description, and functionality text description

Actor_1

Use_case_1: checking validity of thesis proposal

Use_Case_5: generating list of doctoral students ready for final defence

Use_case_3: get the doctoral student information

Use_Case_4: show the faculty member assignment related to doctoral student

Use_case_2: checking fulfillment of requirement for doctoral students

1
1

1

1

1

1

1

1

<<include>>

Use case1: Check validity of thesis
proposal

Use case2: Check fulfillment of
requirements for doctoral
students

Use case3: Get the doctoral
student’s information

Use case4: Show the faculty member
assignment related to
doctoral students
information

Use case5: generating list of
doctoral students ready
for final defense.

“Given the requirement for the
degree, the system should check
periodically the fulfillment the
doctoral student for the doctoral
thesis. The report should be
generated. The report shows the
current status of each thesis.
Satisfying all requirements the
system should notify the
supervisor and notify the Dean
for taking further actions.”

9 Communications of the IBIMA

VisualText is a tool for information

extraction, natural language processing and

text analysis systems. It makes it possible to

find out the function within an event or

action assigned to particular actors and/or

objects in the system. Thus, the goal of UO-

model is to analyze the functionality

description and as a result to add

functions/operations to respective objects.

As illustrated in Figure 6, several use cases

may be used to describe one well-defined

functionality of the system to be built

within the problem domain. The

ontological analysis of such a functionality

description helps the system analyst to

identify more precisely the real objects,

which will play a substantial role in

implementing the respective system

functions. This can be done comparing

(matching) the objects, already identified

in the O-model. Obviously, if we have more

than one functionality description to

analyze, respective objects will be defined

for each of them. It becomes easier now for

the developer to decide which object

should be considered as a separate ADT

and which as an element of another ADT.

For example, if a new object appears as a

result of the ontological analysis of a

functionality description but is not

identified as a separate object from the O-

model, it must be considered as an

additional separate object now. Figure 7

illustrates how the two tools OntoExtract

and VisualText can help determining which

functions are relevant to the working

objects in our problem domain description.

The figure also shows that it is possible for

new relationships to appear between the

objects generated by the two tools, which

means that they should be formalized in

respective new attributes.

Figure 7 Output from a functionality text description

3.5 DF-model: Data and function model

Data (attributes) and functions (methods,

operations) are the two fundamental parts

of any object, represented as ADT. Each of

the models introduced already has its own

contribution to creating one or another

element of those two parts. We can

continue in this way relying on the decision

making abilities of the developer to the

final acceptable object model of the system

containing ADTs. However, because of the

requirement for decision making this

process can still be characterized as

subjective or even intuitive, which was the

main reason to propose our approach. To

avoid this situation we can recall the most

powerful feature of both object and

ontology orientation - they allow for a high

degree of reusability of their artifacts in

different application domains. The idea is

very simple - if something is defined

 actor: the system (object3)
act: notify
obj: the supervisor
(object10)

“Given the
requirement …the
report should be
generated. The
report shows the
current status of
each thesis.
Satisfying all
requirements. The
system should notify
the supervisor and
notify the Dean for
taking further
actions.”

<rdf:Description rdf:about="http://www.enit.rnu.tn#report">
…
 <rdfs:subClassOf rdf:resource="http://www.enit.rnu.tn#report" />
 <oe:veryWeaklyRelatedTo rdf:resource="http://www.enit.rnu.tn#thesis
 <oe:veryWeaklyRelatedTo rdf:resource="http://www.enit.rnu.tn#current_status
 <rdfs:label xml:lang="en">report</rdfs:label>
 </rdf:Description>

VisualText

OntoExtract

Communications of the IBIMA 10

already and checked successfully and has

been used in practice, perhaps with some

adjustments it can be used for another

developer’s needs. This idea is

implemented and used broadly in object-

oriented software engineering through

business objects and related patterns,

shown in more detail for example in

Batanov and Arch-int, 2003. We propose

here an extension of this idea introducing

the notion of Ontological Business Object

Pattern (OBOP). An OBOP is an ontology-

based description of a business object that

presumably will be included as a working

object in the object-oriented software

system. We actually rely on the fact that

there are a great number of ontological

descriptions of concepts (objects) in

different problem domains, existing

already in a research study by Johansson

(1998) and available from ontology library

systems such as WebOnto, Ontolingua,

DARPA Agent Markup Language (DAML),

SHOE (Simple HTML Ontology Extensions),

etc.

We use the DAML ontology library and

SHOEntity libraryin our work, more

specifically their catalogs of ontologies,

which are available in XML, HTML and

DAML formats. Here classes are called

categories and these categories constitute a

simple “is-a” hierarchy while the slots are

binary relations. The relations between

instances or between instances and data

are allowed to have any number of

arguments as cited by Noy et al. (2000).

What the developer should do at this phase

is to select the suitable ontology for the

respective problem domain. Figure 8

shows an example of how available

ontological description for our particular

problem domain can be considered as

OBOP.

Figure 8 Ontological class hierarchy used as a pattern

Representation of ontology specifications is

standardized in a form of object

description and this provides a great

advantage for software developers. For

example, the ontological description shown

in Figure 8 is found in the ontology library

and has a structure, which can be used by

the developer directly as not only class

hierarchy but as a structured content of

respective classes. Therefore, this

description can be considered as OBOP.

Within this pattern the concept (object)

“student” possesses exactly the properties

(attributes) necessary for the system under

development. We can say the same for the

root concept (object, class) “person”.

Moreover, in the ontology the attributes

themselves are treated as concepts

(objects) just like in object orientation,

which means that we can follow and

extract the description of all objects which

we are interested in within the class

hierarchy. More specifically, the

relationships are formalized through the

arguments (attributes), which are either

types (Atomic ADTs) or categories (objects,

classes). If the argument is a category, any

subcategory of that category is also valid in

the ontology. In addition, the relationship

between any two concepts (objects) is a

<Class ID="Student">
 <label>student</label>
 <subClassOf resource"=#Person/ ">
</Class>
<Property ID="takesCourse">
 <label>is taking</label>
 <domain resource="#Student" />
 <range resource="#Course" />
</Property>
<Property ID="doctoralDegreeFrom">
 <label>has a doctoral degree
from</label>
 <domain resource"=#Person/ ">
 <range resource"=#University/ ">

Class
Hierarchy

11 Communications of the IBIMA

commitment and all commitments are

specific to objects and phenomena in one

particular domain as mentioned by

Chandrasekaran et al. (1999). Figure 9

shows that if a relationship exists between

two concepts (objects), they are both

objects in our problem domain (for

example, “takesCourse” has a relationship

with argument1 “Student” and argument2

“Course”, which should be considered as

working objects). The phenomenon “age” is

related to argument1 “Person” and

argument2”NUMBER” (type or Atomic

ADT), which is different from the first

relation ("takesCourse"), so in this case, we

should consider the “age” only as an

attribute of “Person”.It is clear, however,

that this attribute “age” will be valid also

for objects “Student” and

“GraduateStudent” because of the

generalization/specialization relationship.

Figure 9 the relations pattern

3.6 Mr-model: Reduced matrix model

In order to emphasize the necessity of this

model we will review what information the

developer has up to this point working with

the models described above:

1. Set of objects in the problem domain PD =

{O1, O2, O3,.., Oa} with their names and

relationships, extracted from the T-model

by an ontological engine (in our case

CORPORUM OntoExtract). The result is

represented in the Mf-model.

2. Set of objects FOE = {O1, O2, O3,.., Ob} with

their names and relationships as a result

of applying an ontological engine (in our

case OntoExtract) on a Use Case-based

system functionality. The result is

represented in a part of the UO-model.

3. Set of objects FVT = {O1, O2, O3,.., Oc} with

their names, relationships and functions

as a result of applying an ontological

engine (in our case VisualText) on a Use

Case-based system functionality. The

result is represented in the other part of

the UO-model.

4. Set of objects BOP = {O1, O2, O3,.., Od}with

their names, relationships (including

hierarchical information) and functions as

a result of searching for OBOPs in

ontology libraries (in our case DAML and

SHOEntity). The result is represented in

the DF-model. Figure 10 shows in

graphical form, although far from precise,

the existing situation. Without a doubt all

objects are within the system problem

domain but on one hand their number is

still large (this is true even for relatively

simple systems) and they are defined

from different perspectives (different

models are used).

Relation Argument 1 Argument 2
===
takesCourse Student Course
Age Person .NUMBER
Email Address Person .STRING
Head Organization Person
UndergraduateDegreeFrom Person University
MastersDegreeFrom Person University
DoctoralDegreeFrom Person University
advisor Student Professor

Communications of the IBIMA 12

Figure 10 Integration procedure

Our presumption, based on a number of

experiments, is that the basic objects, which

will play a substantial role in ensuring the

system functionality, will appear in all of the

above models regardless of the perspective.

This practically means that we can apply a

simple integration procedure - intersection

of the above sets - to identify those objects

In Figure10 the resulting area is X, or
X = PD ∩ FOE ∩ FVT ∩ BOP

Applying the above procedure the

developer has the opportunity reduce the

number of objects, which he/she is

interested in, or to transform the full

matrix model (Mf-model) to reduced

matrix model (Mr-model). Along with this,

the developer can use another quantitative

technique for reducing the number of

objects using the already mentioned

parameter weight, assigned to each object

during the process of creating the Mf-

model. This technique is based on a simple

assumption, which is well supported by our

experiments – an object with higher weight

would play a significant role in the system

and, therefore, can be identified as a

separate object (ADT). At this stage of

research, to determine the degree of weight

as low or high we refer to our experiments,

which qualitatively show that the border is

somewhere about 4 or 5 and a value above

10 should be definitely considered as high

weight. For objects with low weight, there

are two options, either to consider them as

complementary objects, to be included as

attributes or references in other objects, or

to rename and consider them as separate

objects. The final decision should be taken

by the developer. The resulting Mr-model

will look like the matrix shown in Figure

11.

X

FOE FVT

BOP

PD

13 Communications of the IBIMA

Figure 11 Mr-model matrix

3.7. C-model: Class model

The C-model is the goal of preliminary

analysis of object-oriented systems. This is

the well-known class hierarchy

representation, including some initial but

significant relationships for the system

functionality contents of objects – data and

behavior (functions, operations). We stress

on the word initial here to emphasize the

fact that the analysis is far from over yet.

The developer should continue applying the

conventional analysis models, methods and

techniques on the C-model, which can lead

to substantial changes, including adding

new objects, deleting some objects, adding

or removing some elements of the included

objects, etc. The C-model can be

represented graphically using different

tools such as Rational Rose (class

diagrams), textually using either some

natural language or pseudo programming

language, and finally using some highly

structured tag-based language.

3.8. XML-model: XML object model

This model is optional but extremely useful

for exchanging analysis and design

information through the Web for

supporting collaborative work. It

represents the C-model using the third

option mentioned above and, more

specifically XML (eXtensible Markup

Language) as a language-specification for

computer-readable documents or a

metalanguage, which can be used as a

mechanism for representing other

languages in a standardized way as

mentioned by Klein (2001). In our case we

use W3C XML Schema, which allows the

highest flexibility in describing all

necessary elements of any object hierarchy

on one hand and the details of object model

on the other, Figure 12 illustrates a part of

the XML-based description of the object

“student” as an ADT.

Figure 12 Example of XML object model

a p p r o

v a l
t h e s is

a p p l ic

a t io n

s u p e r

v is o r

d e p a r t

m e n t

e x a m i

n a t io n

d e g r e

e

p e rm i

s s io n
d e a n r i g h t

t h e s is

_ p r o p

o s a l

t h e s is

_ r e s e

a r c h

s t u d e

n t

s t a f f _

m e m b

e r

f u l l_ t i

m e _ r

e s id e

n t

f in a l_ t

e rm

e x a m i

n a t io n

_ r e q u i

r e m e

in t e l le

c t u a l_

p r o p e

r t y

d e p a r t

m e n t _

c o m m

it t e e
o 1 o 2 o 3 o 4 o 5 o 6 o 7 o 8 o 9 o 1 0 o 1 1 o 1 2 o 1 3 o 1 4 o 1 5 o 1 6 o 1 7 o 1 8 o 1 9

a p p r o v a lo 1 � � � � �
5

t h e s is o 2 � � � � � � � �
8

a p p l ic a t io no 3 � �
2

s u p e r v is o ro 4 � � �
3

d e p a r tm e n to 5 � � �
3

e x a m in a t io no 6 �
1

d e g r e e o 7 � � � �
4

p e rm is s io no 8 � �
2

d e a n o 9 � � � �
4

r ig h t o 1 0 � � �
3

t h e s is _ p r o p o s a lo 1 1 � � � � �
4

t h e s is _ r e s e a r c ho 1 2 �
1

s t u d e n to 1 3 � � � � � � � � � �
1 0

s t a f f _ m e m b e ro 1 4 � � �
3

f u l l_ t im e _ r e s id e n to 1 5 � � � �
4

f in a l_ t e rmo 1 6 � � � �
4

e x a m in a t io n _ r e q u i r e m e n to 1 7 � � � � �
5

in t e l le c t u a l_ p r o p e r t yo 1 8 � � �
3

d e p a r tm e n t _ c o m m it t e eo 1 9 � � � �
4

5 8 2 3 3 1 4 2 4 3 4 1 1 0 3 4 4 5 3 4

w e ig h

t

w e ig h t

<elementtype name="student">
 <empty/>
 <attdef name="student name"
datatype="string"/>
 <attdef name="degree">
 <enumeration
datatype="NMTOKEN">
 <option>Bachelor</option>

 <option>Master</option>
 <option>Doctoral</option>
 </enumeration>
 <funcdef name="getter">
 <funcdef name="setter">
 <required/>
 </funcdef>
 </attdef>

</elementtype>

Communications of the IBIMA 14

4. Conclusion:

We believe that merging ontologies with

existing methods, techniques, and tools

used during the analysis phase of complex

object-oriented software systems can

contribute significantly to reaching better

decisions, with a positive effect on all the

subsequent phases of the development

process. This paper describes a

methodology for supporting the high-level

analysis phase of object-oriented software

engineering using ontologies for

identification of system objects. Eight

models are introduced and briefly

described in the paper as a part of this

methodology. We believe that these models

and the process of their transformation can

help developers of complex object-oriented

software systems to: (a) transform user

requirements (represented as text

description) into an object model of the

system under development based on the

use of ontologies; (b) improve the existing

methods and techniques for creating a

specific ontology from a text description of

the system problem domain, which would

serve as a source for identifying the objects

and their respective ADTs; (c) work out

implementation techniques and tools for

semi-automated or automated generating

and editing of ADTs for object-oriented

application software development, and (d)

improve the effectiveness and efficiency of

the existing methodology for high-level

system analysis in object-oriented software

engineering.

The research work for improving the

proposed methodology is however not

completed yet. A lot of work is still ahead

mainly in regard to the formalization of the

methods and techniques introduced so far

in order to make them a part of CASE.

Identification of objects and related ADTs is

based on ontology analysis but if for a

given problem domain such ontology still

does not exist, the developers should be

ready to create this ontology themselves

including a description of well selected

ontological business object patterns. In any

case we strongly believe that using

ontologies has a great potential for analysis

and design of complex object-oriented

software systems.

References:

Gruber, T. R (1993) ‘A translation approach

to portable ontology specifications.

Knowledge Acquisition 5, 199-220.

Gruber, T. R. (1994) Towards Principles for

the Design of Ontologies Use for

Knowledge Sharing. In Proceedings of

IJHCS-1994, 5 (6) (1994), 907-928.

Helfin, J. and Volz, R. Volz and Dale, J.

(2002), “Requirements for a Web Ontology

Language. W3C Working Draft”.

Deridder, D. Deridder, and Wouters, B.

(1999) “The Use of Ontologies as a

Backbone for Software Engineering Tools”,

Programming Technology Lab, Vrije

Universiteit Brussel, Brussels, Belgium.

Swartout, W. (1999) “Ontologies. IEEE

Intelligent Systems January/February”, pp.

18-25.

Weiss, M. A. Weiss, (1993) Data Structures

and Algorithm Analysis in C.

Benjamin/Cummings Publishing Company,

Florida International University, Redwood

City, CA.

Manola, F. (1999) Technologies for a web

object model. IEEE Internet Computing

January-February, pp. 38-47.

Engles, R. (2001) Del 6: CORPORUM –

OntoExtract ontology extraction tool, On-

To-Knowledge: Content-driven knowledge

management tools through evolving

ontologies. IST project IST-1999-1032, On-

To-Knowledge.

 Engles, R. H. P. And Bremdal, B. A. Jones,

and R. Jones, (2001) CORPORUM: a

workbench for the semantic web.

EXML/PKDD workshop, CognIT a.s.

Gil, Y. and Ratnakar, V. (2002), A

comparison of (semantic) markup

languages. Proceedings of the 15th

International FLAIRS Conference, Special

Track on Semantic Web, Pensacola, FL.

15 Communications of the IBIMA

Batanov, D. N. and Arch-int, S. (2003)

towards construction of business

components: an approach to development

of web-based application systems, In:

Peckham J and Lloyd SJ (eds) Practicing

Software Engineering in the 21st Century.

IRM Press, pp. 178-194.

Benett, S. and McRobb. S. and Farmer.R.

(1999) Object-Oriented System Analysis

and Design Using UML. McGraw-Hill,

International Editions 2000, London.

Johanson, I. (1998) Pattern as an

ontological category, In: Guarino N (ed),

Formal Ontology in Information Systems.

IOS Press, Amsterdam, Netherlands, pp. 86-

94.

Noy, N.F. and Sintek, M. and Decker. S et al.,

(2001) Creating semantic web contents

with Protégé-2000. IEEE Intelligent

Systems March/April, pp. 60-61.

Chandrasekaran, B. and Josephson. J. R. and

Benjamin, V. R. (1999) what are ontologies,

and why do we need them? IEEE Intelligent

Systems, 14(1): 20-26.

Klein, M. (2001) XML, RDF and relatives.

IEEE Intelligent Systems March/April,

2001, pp. 26-28.

