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Introduction 

 
Warehouse management involves a huge 
quantity of product movements performed 
in a work shift, so its success depends on the 
procedure used to retrieve customer orders 
to deliver them on time at the lowest 
possible cost (Bustillo et al., 2015). Due to 
this fact, optimizing warehousing processes 
has become an important objective since a 
small efficiency improvement of these 
operations can produce significant savings 

in product movements and costs (Albareda-
Sambola et al., 2009; Chen et al., 2005). 
 
Order picking is the process responsible for 
recovering items from storage positions 
required by customer orders, minimizing 
costs related to traveled distance, operating 
time, and tardiness in the customer delivery 
(Albareda-Sambola et al., 2009; Azadnia et 
al., 2013; Bustillo et al., 2015). In addition, 
order picking is the most routine and labor-
intensive process within warehouses, 
generating around 60-70% of the total 
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operating cost (Chen et al., 2015), so 
significant reductions in costs can be 
achieved by applying efficient policies to 
retrieve items for customer orders 
(Albareda-Sambola et al., 2009; Chen et al., 
2005). 
 
For this reason, the order batching 
facilitates the order picking process by 
grouping customer orders in batches (Hsu 
et al., 2005), thus recovering several orders 
in a single tour and reducing traveled 
distances and by the warehouse (Chen et al., 
2005). In this way, the items belonging to 
orders grouped in a batch are collected 
simultaneously, generating efficient picking 
routes (Albareda-Sambola et al., 2009). 
The order batching is considered as an 
optimization problem that groups customer 
orders into a set of batches with a maximum 
capacity, and each customer order is made 
up of several items located in specific 
storage locations (Cano et al., 2018b). 
Therefore, the order batching aims to 
process a high volume of orders by 
consolidating small orders in batches, and 
prevails in warehouses to reduce the 
number of required tours, providing greater 

efficiency and productivity than using 
single-order picking (Bustillo et al., 2015; 
Chen and Shen, 2016). Accordingly, a batch 
is a set of grouped orders to be recovered in 
a single tour. In turn, a customer order is 
made up of a number of lines, and each line 
corresponds to an SKU, the requested 
quantities, and the storage locations to visit 
in a tour (Bozer and Kile, 2008). 
Then, the picker routing problem 
determines the routes to retrieve the 
batches created in the order batching, and is 
considered as a Traveler Salesman Problem 
(TSP) (Cano et al., 2019a, 2019b, 2017a) 
that plans the shortest route to minimize 
travel distance and time, starting and 
ending in a point called Depot (Hsieh and 
Huang, 2011). As shown in Figure 1, usually 
a routing strategy is applied to determine 
the travel distance in each batch. Among 
these routing strategies, the most used in 
practice are the traversal or s-shape 
strategy and the largest gap strategy 
(Albareda-Sambola et al., 2009; Azadnia et 
al., 2013; Cano et al., 2017a, 2017b). Thus, 
the order batching efficiency is measured 
through the total traveled distance provided 
by the routing strategies.

 

 

Fig. 1: Description of the OBP 

On the other hand, the OBP is considered NP-

Hard, which is why optimal solutions are 

difficult to obtain in reasonable computing 

times. Therefore, this problem can only be 

solved in polynomial time if each batch 

contains at most two customer orders 

(Gademann and van de Velde, 2005). To 

overcome these difficulties, some heuristics 

such as rule-based algorithms, and seed and 

savings methods have been proposed to solve 

the OBP (Albareda-Sambola et al., 2009; Hsu 

et al., 2005; Koch and Wäscher, 2016), as well 

as data mining methods, association rules and 

cluster analysis (Azadnia et al., 2013; Hwang 

and Kim, 2005).  

In the daily operations of a warehouse, the 

order batching and picker routing must be 

performed frequently, so it is required to 

provide high-quality solutions (pseudo-
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optimal) without involving high costs in 

computational resources (Cergibozan and 

Tasan, 2016; Won and Olafsson, 2005). 

Therefore, it is essential to develop effective 

metaheuristic approaches such as Genetic 

Algorithms (GA), which are based on 

population search processes, evaluating 

several solutions simultaneously in each 

iteration, providing greater efficiency to find a 

pseudo-optimal solution (Cano et al., 2018a). 

For the OBP, two genetic algorithm 

approaches have been used, which are item-

oriented genetic algorithms and group-oriented 

genetic algorithms (Chirici and Wang, 2014; 

Koch and Wäscher, 2016). In item-oriented 

genetic algorithms, the number of genes in 

each chromosome is equal to the number of 

customer orders, so the size of the 

chromosomes is constant (Cano et al., 2018a); 

whereas in group-oriented genetic algorithms 

each gene represents a batch, so the size of 

each chromosome varies and depends on the 

total number of batches. However, one of the 

main difficulties in genetic algorithms is 

related to the choice of suitable parameters, 

because these parameters directly influence the 

algorithm's convergence, the computing time, 

and the possibility of stagnation in local 

optima. It would be expected that the 

parameters could offer an adequate balance 

between exploitation and exploration of the 

solution space. 

As shown in Table 1, some parameter values 

for item-oriented genetic algorithms in order 

batching problems have been proposed in the 

literature, as well as some parameter values for 

group-oriented genetic algorithms (see Table 

2).  

 
Table 1:  Parameters for item-oriented genetic algorithms 

 

Parameters 

Authors 

(Hsu et 
al., 2005) 

(Tsai et 
al., 2008) 

(Öncan, 
2013) 

(Azadnia 
et al., 
2013) 

(Chirici 
and Wang, 

2014) 

(Chen et 
al., 2015) 

(Koch and 
Wäscher, 

2016) 

(Cano et 
al., 

2018a) 

Population size 20 20 20 + n/2 200 4 x n 50 4 x n 20 + n/2 

Crossover rate 60% 90% 60% 80% 50% 20% 50% 90% 

Mutation rate 5% 5%  20% 10% 10% 10% 10% 

Elitism rate - - 20%  - - - 10% 

Immigration rate - - 20%  - - -  

Iterations 

(generations) 
500 15 40+ ⌈n/3⌉ 10.000 80 20% 80 40+ ⌈n/3⌉ 

n: number of customer orders 

 
 

Table 2: Parameters for group-oriented genetic algorithms 
 
 

Parameters 
Authors 

(Pan et al., 
2012) 

(Chirici and 
Wang, 2014) 

(Koch and 
Wäscher, 2016) 

(Mutingi and 
Mbohwa, 2017) 

Population size 20 4 x n 4 x n 30 
Crossover rate 60% - - 45% 

Mutation rate 5% 30% 30% 20% 

Elitism rate - 10% 10% - 

Immigration rate       8% 

Iterations (generations) - - - - 

Population size 50 80 80 200 

n: number of customer orders 

 
The information from Table 1 and Table 2 
suggest the non-existence of standard 

values for genetic algorithm parameters, 
which invites to validate the parameter 



IBIMA Business Review                                                                                                                                      4  

________________________________________________________________________________ 

______________ 
 
Jose Alejandro CANO (2019), IBIMA Business Review, DOI: 10.5171/2019.802597 

values for each OBP, taking into account the 
algorithm operators and specific 
programming conditions of each genetic 
algorithm. Therefore, this article aims to 
validate the parameters of a genetic 
algorithm for the OBP, identifying the 
parameter values that offer better solution 
quality and recommending strategies to 
reduce the computing time of the algorithm. 

Genetic Algorithms for the OBP 

Warehouses and distribution centers are 
interested in finding the most economical 
way to recover customer orders, which 
implies minimizing operating costs and 
reducing travel distance and time (Chen et 
al., 2005; Hsu et al., 2005). Thus, most of 
order batching problems focus on reducing 
the total traveled distance (Bozer and Kile, 
2008, Chen et al., 2005, Hsieh and Huang, 
2011, Hsu et al., 2005; Koch and Wäscher, 
2016; Kulak et al., 2012), which also 
represents the operating costs reduction, 
and even the travel time reduction when 
considering constant speed for the picking 
devices. The assumptions for the OBP in 
warehouses and distribution centers are as 
follows: 

• The size of a batch is limited by the 
capacity of the picking device. 

• Each customer order is assigned to 
one and only one batch. 

• A customer order cannot be 
assigned to several batches (no 
splitting). 

• The size of a customer order is less 
or equal to the picking device 
capacity. 

• The picker routing is performed in 
the first level of the warehouse, 
considering only horizontal 
movements. 

• The tours performed to retrieve a 
batch follow an s-shape routing 
policy. 

The use of group-oriented genetic 
algorithms prevails in recent years to solve 
the OBP since the representation of the 
solutions is aligned with the nature of the 
problem, encoding a batch into a gene. Using 
a group-oriented representation, the 
crossover operator will exchange batches 
(genes) between each pair of individuals 
selected as parents, transmitting genetic 
information to the next generations 
consistently with the problem to be solved. 
For the OBP it is more logical to exchange 
batches than customer orders. 

Figure 2 shows the representation of 
solutions through item-oriented and group-
oriented genetic algorithms. Based on a 
total of 10 customer orders, item-oriented 
approach always generates chromosomes 
of equal length (10 genes, one gene for each 
customer order), and a parallel 
chromosome representing the batch to 
which orders are assigned. On the other 
hand, a group-oriented approach generates 
chromosomes of variable length, which 
depends on the number of batches, and a 
parallel matrix showing the customer 
orders grouped in each batch. 



5                                                                                                                                         IBIMA Business Review  

_________________________________________________________________________________ 

 

______________ 
 
Jose Alejandro CANO (2019), IBIMA Business Review,DOI: 10.5171/2019.802597 

 

Fig. 2: Representation of item-oriented and group-oriented genetic algorithms 

Moreover, a group-oriented genetic 
algorithm for the OBP works according to 
the following basic steps: 

- Step 1: Set the population size (PS), 
number of iterations (NI), crossover rate 
(CR), mutation rate (MR), elitism rate (ER), 
and immigration rate (IR). 

- Step 2: Create the initial population. Batch 
1 is opened and assigned to the first gene, to 
which available orders are randomly 
assigned, and the assignment of orders is 
repeated until no order has a size less or 
equal to the available capacity of the picking 
device. Then, Batch 2 is opened and 
assigned to the second gene, repeating the 
customer order assignment process used 
for Batch 1. New batches are opened until all 
customer orders are assigned to a batch. 
This procedure to create genes (batches) is 
called Order Pool Procedure. 

- Step 3: Calculate the fitness value of each 
chromosome using the s-shape routing 
policy for each batch (gene), providing the 
total traveled distance as the sum of the 
traveled distances in each batch. If the 
fitness value of the best performing 
individual in the current population is 

better than the overall fitness value, then 
the global fitness value is replaced by this 
fitness value and the global solution is 
updated. 

- Step 4: Select the PS x ER best performing 
chromosomes and incorporate them into 
the next generation, guaranteeing the 
survival of the best-qualified individuals. 

- Step 5: In order to select parent pairs, use 
the roulette wheel method to select PS x CR 
x 2 chromosomes randomly from the 
current generation. 

- Step 6: Create PS x CR offspring using the 
crossover operator, and incorporate them 
into the next generation. A two-point 
crossover operator is utilized to exchange 
complete genes between parent 
chromosomes. To correct non-feasible 
chromosomes, old genes (batches) 
containing customer orders included into 
the new genes (inserted with the crossover 
operator) are deleted. The customer orders 
contained in the deleted genes become 
available in the order pool and are assigned 
to new batches following the procedure 
mentioned in Step 2. 

Customer orders 1 2 3 4 5 6 7 8 9 10

Customer order size 3 23 9 27 1 2 7 39 36 3

Picking device capacity 50

Customer orders 9 7 5 1 6 4 2 3 10 8

Batches 1 1 1 1 1 2 2 3 3 4

Customer orders 8 7 10 3 9 1 4 2 5 6

Batches 1 1 1 2 2 2 3 3 1 2

Batches 1 2 3 4       Batches 1 2 3

1 2 3 8 5 1 2

5 4 10 7 3 4

6       Customer orders 8 6

7 10 9

9

Item-oriented approach

Group-oriented approach

Customer orders

Chromosome 1

Chromosome 2

Chromosome 1 Chromosome 2
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- Step 7: Create PS x IR chromosomes for the 
next generation using the immigration 
operator, which is based on the same 
procedure used for the initial population in 
Step 2. 

- Step 8: Randomly select PS x MR 
chromosomes from the new generation and 
apply to them the mutation operator. For 
the selected chromosomes, randomly select 
two genes and delete them. The customer 
orders contained in the deleted genes 
become available in the order pool and are 
assigned to new batches following the 
procedure mentioned in Step 2. 

- Step 9: If the stop criterion is not satisfied, 
return to Step 3, otherwise, finish the 

algorithm and show the global solution and 
global fitness value. 

Experiments 

In order to establish the parameter values 
that provide a better performance in a 
group-oriented genetic algorithm for the 
OBP, the parameter values and operating 
conditions used by Chirici and Wang (2014), 
Koch and Wäscher (2016), Mutingi and 
Mbohwa (2017), and Pan et al., 2012 were 
taken as a reference for the experiments, as 
shown in Table 3. In addition, the 
experiments considered 50 iterations and 
the immigration rate (IR) was calculated as 
1 – CR – ER for each experimental instance. 

 
 

 
Table 3: Experimental values for genetic algorithm parameters 

 

Parameters Levels Values 

Population size (PS) 3 10, 20, 30 

Crossover rate (CR) 2 70%, 85% 

Elitism rate (ER) 2 5%, 10% 

Mutation rate (MR) 2 5%, 15% 

 
Therefore, 24 instances were generated, 
and 10 replications were run in each 
instance, obtaining 240 experimental runs 
to establish the parameter values for the 
genetic algorithm. As shown in Table 4, an 

operating environment was established 
according to the number of customer 
orders, the picking device capacity, 
customer order size, and the number of 
items per order. 

 
 

Table 4: Experimental values for the picking parameters  
 

Parameters Levels 

Number of customer orders 40 

Picking vehicle capacity 50 

Customer order size Uniform [5, 25] 

Number of items per order Uniform [5, 15] 

 
 
 
We used a warehouse with 10 aisles and 45 
storage locations per aisle, for a total of 900 
storage locations, following the same 
warehouse configuration used by Henn, 
(2015), Koch and Wäscher (2016), 
Menéndez et al. (2017a, 2017b), and 
Mutingi and Mbohwa, (2017). 

Results 

According to the experimental results, Table 
5 shows that a population size of 20 
individuals, a crossing rate of 85%, an 
elitism rate of 10%, a mutation rate of 5%, 
and an immigration rate of 10% provides 
the minimum total traveled distance for the 
group-oriented genetic algorithm. Results 
from Table 5 suggest that the genetic 
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algorithm performance is enhanced using a 
high crossover rate, a higher elitism rate, 
and a lower mutation rate in order to 
promote better exploration of the solution 
space, guarantee in each generation the 
survival of the best individuals, and keep a 
low randomness level to avoid stagnation in 
local optima. Indeed, to include randomness 

to the algorithm, the parameter values 
prioritize the use of the immigration 
operator over the use of the mutation 
operator. Therefore, the randomness 
depends more on the creation of new 
individuals than on the alteration of specific 
genes in existing individuals. 

 
Table 5: Performance of the genetic algorithm parameters 

 

Parameter Value 
Average total traveled 

distance 
Average computing 

time (seconds) 

Population size (PS) 

10 4314     94** 

20   4191* 225 

30 4196 259 

Crossover rate (CR) 
70% 4277     178** 

85%   4141* 218 

Elitism rate (ER) 
5% 4277 192 

10%   4190*     188** 

Mutation rate (MR) 
5%   4212* 193 

15% 4280     184** 

  * Results with better performance in traveled distance 

** Results with better performance in computing time 

Regarding computing time, in almost all 
cases, the parameter values offering large 
traveled distance correspond to those 
offering shorter computing times. 
Therefore, according to the requirements of 
each OBP, decision-makers must establish a 
balance between the quality of the solution 
and the computational cost. For order 
batching problems demanding fast 
solutions, the population size (PS) should be 
reduced since this parameter is used for 
calculating the number of chromosomes to 

which crossover, mutation, elitism, and 
immigration operators are applied (see 
Table 6). Likewise, as the population size 
(PS) decreases, the number of tours 
performed with the s-shape strategy 
decreases. As the order pool procedure is 
used for the initial population, the 
immigration operator, the mutation 
operator, and the correction mechanism in 
the crossover operator, then the population 
size significantly influences the number of 
batches created in the genetic algorithm. 

Table	6:		Size	of	the	genetic	algorithm	according	to	the	population	size		
	

Population size 
(PS) 

Batches created by the 
order pool procedure 

Chromosomes created by the 
crossover operator 

Number of tours  

10 9.320 425 500 

20 18.640 850 1.000 

30 27.960 1.275 1.500 

40 37.280 1.700 2.000 

50 46.600 2.125 2.500 

Values obtained when considering CR=85%, ER=10%, MR=5%, IR=10%, Iterations=50 

 
As a second option, the computation time 
decreases as the number of generations 
(iterations) decreases, so the number of 
steps of the genetic algorithm is drastically 
reduced. Consequently, the number of 
batches created by the order pool 

procedure, the number of tours, and the 
number of chromosomes created by the 
crossover operator increase linearly as the 
number of generations increases (see Table 
7).  
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Table	7:	Size	of	the	genetic	algorithm	according	to	the	number	of	iterations	(generations)	

	

Iterations 
Batches created by the 
order pool procedure 

Chromosomes created by the 
crossover operator 

Number of tours  

10 3.920 170 200 

20 7.600 340 400 

30 11.280 510 600 

40 14.960 680 800 

50 18.640 850 1.000 

Values obtained when considering PS=20, CR=85%, ER=10%, MR=5%, IR=10% 

 
Another strategy to reduce the computing 
time is including a stop criterion, so if a 
specific number of iterations is achieved 
without any improvement in the global 
fitness value, the algorithm finishes. 
Authors like Hsu et al. (2005) and Cano et al. 
(2018a) have proposed stopping the 
algorithm after 40 iterations without any 
improvement in the global fitness value, 
while Öncan (2013) proposes that this value 
is proportional to the number of customer 

orders, through the calculation ⌈n/4⌉, where 
n represents the number of customer 
orders. 
 
As a third option, the computing time of the 
genetic algorithm can be reduced as the 
crossover rate (CR) is reduced, decreasing 
the number chromosomes crossed in each 
generation, which usually requires a 
correction mechanism when the crossover 
creates unfeasible offspring (see Table 8). 

 
 

 
Table 8: Size of the genetic algorithm according to the crossover rate 

 

Crossover rate 
(CR) 

Batches created by the 
order pool procedure 

Chromosomes created by 
the crossover operator 

Number of tours  

40% 15.940 400 1.000 

50% 16.540 500 1.000 

60% 17.140 600 1.000 

70% 17.740 700 1.000 

80% 18.340 800 1.000 

Values obtained when considering PS=20, ER=10%, MR=5%, IR=10%, Iterations=50 

 
Finally, other strategies, such as including 
well-performing individuals to the initial 
population (solutions based on basic 
heuristics or priority rules), as well as the 
use of local search algorithms to refine the 
results of the best performing individuals in 
each generation, can increase the solutions 
quality and reduce the number of iterations 
required in a genetic algorithm. 

Conclusions 

This study defined the parameter values for 
a genetic algorithm to guarantee better 
results during its execution in terms of the 
solutions quality and computing times. The 
parameter validation for a metaheuristic is 
required when an algorithm operator is 
included or excluded, when changing the 
solution encoding (item-oriented, group-

oriented), and when adapting a 
metaheuristic used to solve other problems 
different to the OBP. For the group-oriented 
genetic algorithm addressed in this study, it 
is recommended to use a population size of 
20 individuals, a crossover rate of 85%, an 
elitism rate of 10%, an immigration rate of 
10% and a mutation rate of 5%. In case of 
requiring shorter computing times, we 
suggest reducing the population size and 
the number of iterations. Likewise, other 
strategies such as including well-
performing individuals to the initial 
population and using local search 
algorithms could improve the solutions 
quality and computing time for a group-
oriented genetic algorithm. 
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