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Introduction 

Financial market facilitates channeling of capital 

from segments with its surplus to deficit and 

matches counterparties with the intention of an 

efficient investment. Bodie, Kane and Marcus 

(2021) highlighted that either individual or 

institutional investors commit their capital to 

selected investment opportunities and 

anticipate adequate benefit which is a 

satisfactory rate of return from their unique 

allocation. For that reason, within the 

investment analysis the essential analytical task 

is to determine portfolio proportions subjected 

to individual objectives. Markowitz (1952) 

proposed a quantitative framework that aims at 

Abstract 

Nowadays it is increasingly important to enhance the efficiency and robustness of the allocation in a 

financial instruments’ portfolio, especially, in the occurrence of an increased market volatility. In this 

paper, a market volatility-robust (i.e. counter cyclical) investment portfolio formulation procedure 

under the modified Markowitz’s framework with the use of sampling methods and genetic algorithms 

is established. In essence, the developed model relies on many input samples of rates of return that 

are further implemented in evolution simulations based on the survival-of-the-fittest principle in 

order to overcome the risk of obtaining sub optimal investment proportions. It is demonstrated that a 

similar portfolio composition approach, in comparison to Newton’s optimisation, produces more 

diverse allocations and allows for a more efficient mitigation of increased market volatility 

reverberations. For those reasons, the presented research contributes to existing allocation 

techniques and directly addresses the task of minimizing the adverse implications of market risk, 

what further allows for a rational investment decision-making and, importantly, holds capacity for 

further development.  
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defining a portfolio formulation procedure in 

which, taking into account portfolio statistics, 

investment participants at all times prefer 

higher rates of return whilst exposed to a 

certain risk level or, correspondingly, for a 

particular expected rate of return they always 

favor lower extent of volatility. Bali and Peng 

(2006), Lundblad (2007) or Lettau and 

Ludvigson (2010) confirmed that there is a 

statistically significant positive trade-off 

between financial instruments expected rates of 

return and volatility, as well as Aliber (2011) 

emphasised that if market turbulence is present, 

either as a result of systemic or idiosyncratic 

risk materialisation, an increase in the volatility 

of market parameters and, consequently, 

financial instruments valuations are also 

observed. Formally, the riskier a financial 

instrument is, or the higher its potential loss, the 

higher its expected rate of return, whereas the 

collective investment portfolio is characterized 

with a lower risk level than a sum of risks of 

individual assets. The cited rationale is 

considered as the fundamental notion of the 

portfolio theory (as reminded in, e.g. Elton et al. 

(2014)). Thus, it is true that the optimal 

portfolio holds a combination of financial 

instruments with the possibly best risk-return 

trade-off. 

 

Due to the recent wave of investment losses 

related to the aftermath of the SARS-CoV-2 

pandemic the significance of portfolio risk 

management was again revealed. In the wake of 

a financial crisis correlations of securities’ rates 

of return use to highly appreciate and differ 

from these implied by the economic 

fundamentals what was scrutinized for financial 

market collapses by Loretan and English (2000), 

Hartmann, Straetmans and de Vries (2004) and 

Bekaert, Campbell and Ng (2005) and identified 

as a contagion phenomena. Goetzmann and 

Kumar (2001) further emphasise that it may, e.g. 

influence the efficiency of the idiosyncratic risk 

diversification effect and require pro cyclical 

portfolio rebalancing. Consequently, more 

robust asset selection strategies are elaborated 

and it remains crucial to apply a competent 

optimisation technique for a rational investment 

decision-making which assures of anticipated 

risk-return trade-off. 

 

Therefore, in this paper, a portfolio formulation 

procedure is developed to enhance the 

efficiency of assigning proportions to selected 

securities under the modified Markowitz’s 

framework with the use of sampling methods 

and genetic algorithms at increased market 

volatility. Firstly, the model is based on an 

assumption presented in Litzenberger and 

Modest (2008) that financial market is mostly 

quiescent (business-as-usual/non-crisis; low 

market volatility) and is infrequently 

interrupted by stress (crisis; high market 

volatility) time periods. Secondly, it minimizes 

the negative effects of identified market 

volatility relation between both quiescent and 

stress instances in order to reduce the necessity 

of, e.g. investment position rebalancing what, 

ceteris paribus, limits the related transaction 

costs. Additionally, the attribution of the 

portfolio proportions is done using genetic 

algorithms (i.e. a probabilistic search engine 

used in, e.g. machine learning, first introduced 

by Holland (1975), which emulate operations 

from natural selection mechanisms based on the 

survival-of-the-fittest principle) for sampled 

input data, either from empirical distribution or 

a theoretical distribution. All to address the 

estimation risk problem which is related to 

potentially biased historical input data 

examined by Orwat-Acedańska and Acedański 

(2013). Similarly formulated investment 

portfolios may be regarded as an addition to 

literature and also serve as an alternative to 

commonly utilized mean-variance optimization 

techniques. 

 

Thus, this paper intends to resolve the research 

question whether the adoption of the 

abovementioned portfolio formulation 

procedure and optimization tools by an 

individual or an institutional investor could 

improve the efficiency of securities allocation, 

distinctively, at an increased market volatility, 

e.g. stemming from exogenous events.  

 

The remainder of this paper is organised as 

follows. In Chapter 2 a formulation of the market 

volatility-robust investment portfolio 

composition approach under the modified 

Markowitz’s framework with the use of 

sampling methods and genetic algorithms was 

outlined. Next, in Chapter 3 research findings 

were provided based on the empirical example 

of an investment portfolio optimization with an 

use of the developed approach. Afterwards, in 

Chapter 4 a dedicated portfolio backtesting was 

done. Finally, conclusions were stated. 
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The model 

Portfolio theory background 

Markowitz (1959) assumed that securities rates 

of return follow the multivariate normal 

distribution which implies that an investment 

portfolio is described by its expected rate of 

return E(rp) and variance σp
2 such as: 

����� = ∑ ��	�
�	���	� = ���  

   ���  = ∑ �wi
2σi

2� + n
i=1 ∑ ∑ ��	�����
�	 , ����  =  ���������	

�	�          

(1.) 

(2.) 

where W is a matrix of proportions wi 

(attributed to i-th security), R is a matrix of 

expected rates of return of selected financial 

instruments and C is their symmetric variance-

covariance matrix.  

In line with the above, the rate of return of a 

formulated portfolio is always a weighted 

average of rates of return of its comprising 

financial instruments and, simultaneously, is the 

basic measure of the average yield from the 

investment. The variance of a formulated 

portfolio, however, is not the weighted average 

of the separate securities variances. In case of an 

investment portfolio built upon two financial 

instruments the inherent risk is understood as: 

σp
2 = E(wi
ri  - E(r

i
)) + wj
rj	- E(r

j
)))

2
     (3.) 

where σp
2 is the two asset portfolio variance, wi 

and wj are the weights attributed to securities i 

and j, ri and rj are the rates of return of the 

securities i and j, whereas E(ri) and E(rj) are 

their expected values. Application of the 

binomial theorem, i.e. (x + y)
2
 = x2 + 2xy + y2, 

reduces the variance of two financial 

instruments portfolio to the form of: 

 

σp
2 = E �wi

2�ri - E
ri��2
 + 2wiwj�ri	- E
ri�� �rj - E�rj��  + wj

2 �rj -	E�rj��2� 
(4.) 

from where it is useful to recall the properties of 

the expected value statistic. If the mean of a sum 

of two rates of return is equal to the sum of 

mean of each rates of return (i.e. 

E(ri	+	rj)	=	E(ri)	+ E(rj)) and if a mean of constant 

multiplied by the rate of return is equal to the 

product of the constant and the mean of the rate 

of return (i.e. E(c(ri)) = cE(ri)) it is true that: 

σp
2 =	wi

2E ��ri - E
ri��2  + 2wiwjE ��ri	- E
ri�� �rj - E�rj�� + wj
2E ��rj - E�rj��2� 

(5.) 

where � ��ri	-	E
ri�� �rj	-	E�rj��   

is the covariance, Cov(ri, rj), of securities i and j 

as stated in Alexander (2008). 

As provided in Merton (1972), Elton and Gruber 

(1977) and reminded in Bodie, Kane and Marcus 

(2021) there are two plausible approaches for 

either individual or institutional investors with a 

single period portfolio formulation problem to 

consider. First, (a.) to minimise the volatility of 

an investment portfolio for a given expected rate 

of return which results in finding the solution to 

an optimisation problem with continuous 

random variables, quadratic objective and linear 

constraints. Second, (b.) to maximise the 

expected rate of return of an investment 

portfolio for a given volatility which involves 

solving an optimisation problem with 

continuous random variables, however, with a 

linear objective and all linear constraints but 

one quadratic limitation. Woodside-Oriakhi, 

Lucas and Beasley (2011) pointed that even 

though both methods resemble logically one 

another, approach (a.) is computationally more 

efficient. Subsequently, the portfolio 

optimisation problem is often defined as: 
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!"# ���  = ���� (6.) 

where ∑ �	  =  1�	�  and  0 ≤ �	 ≤ 1 for " = 1, 2, … , # (or no short selling is allowed) and 

subject to an anticipated benchmark rate of 

return, E(rb). 

Sampled market volatility-robust investment 

portfolio 

If the assumption is implemented that financial 

market is mostly quiescent (volatility-wise) and 

is infrequently interspersed with exogenous 

stress periods, either individual or institutional 

investors consider the possibility of relevant 

decline in the rates of return on financial 

instruments and increase of volatility as 

mentioned in, e.g. Kole, Koedijk and Verbeek 

(2006). In that manner, to obtain a volatility-

robust investment portfolio the formulation 

procedure shall minimise the quotient of 

variances in both quiescent �)� and stress 

periods �*� formulated as: 

 

�)� = ���)� 

�*� = ���*� 

(7.) 

(8.) 

where Cq and Cc are symmetric variance-

covariance matrices for respectively quiescent 

and stress intervals. In addition, wi are the 

proportions of capital allocated in i-th security 

under either quiescent or stress regime (with no 

short selling) which sum up to 1. As such, the 

optimisation problem is defined as: 

 

w+ 	=	!"# σc2
σq
2  ,0	≤	wi	≤	1 	where 	i	=	1,	2,	…,	n∑ wi	=	1

n
i=1

 
(9.) 

 

Intrinsically, the market volatility-robust 

investment portfolios allow for less frequent 

position rebalancing which diminishes inherent 

transaction costs (especially transaction fees but 

also other operational costs) and what might be 

attractive for passive investment strategists that 

seek to reduce the consequences of increased 

market volatility on their allocation. 

Analytically, in case of a two financial 

instruments portfolio, if variance in quiescent 

period is �)� and in time of market stress is �*�, 

correlation coefficient of securities rates of 

return is -) (during non-crisis interval) and -*  

(in crisis) and short selling is not allowed 

(∑ �	 = 1�	�  where wi ∈ <0, 1>), then the 

portfolio formulated of two financial 

instruments is built of proportions wA for 

instrument A and (1 – wA) for instrument B. As a 

result, it is true that

 

 

�)� = �.��.)� + 
1 − �.���1)� + 2�.
1 − �.��.)�1)-) 

�*� = �.��.*� + 
1 − �.���1*� + 2�.
1 − �.��.*�1*-* 

(10.) 

(11.) 

 To extract the proportion wA that minimises 

σc
2/σq

2 , it is necessary to differentiate with 

respect to wA which results in: 
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34546 − 17 84�.
1 − �.���.�.)� − 
1 − �.��1)� � − 2
1 − 2�.���.��.)� + 
1 − �.���1)� �: = 0      
(12.) 

If the correlation coefficient of financial 

instruments rates of return in quiescent period 

is a lower value then its equivalent in stress 

period (or  -*  > -)) then the contagion 

phenomena is revealed. Otherwise (i.e. -*  < -)) a 

flight-to-quality effect when volatility increases 

while correlation between selected instruments 

decreases as described in Baur and Lucey 

(2009). Importantly, the analysis and 

implementation of the latter might provide an 

opportunity to formulate as stress-insensitive 

investment portfolio as possible. In essence, 

when the flight-to-quality effect is observed the 

correlation spread between the quiescent and 

stress intervals is negative, what allows to 

obtain a satisfactory volatility and correlation 

trade-off. Therefore, if -*/-)  is not equal to one 

it means that correlations of financial 

instruments rates of return differ in stress 

periods, the proportions condition may be 

simplified to: 

 

�.��.)� − 
1 − �.���1)� = 0   (13.) 

what results in: 

⎩⎨
⎧ �. = �1)�.) + �1)�1 = 1 − �. = �.)�.) + �1)

 

(14.) 

 

for the market volatility-robust portfolio 

composition. The suggested framework seems 

applicable for all asset classes, provided that the 

quiescent/stress regime is assumed and model 

input data is segregated accordingly. 

Moreover, in the Markowitz’s framework the 

proportions �	  are found based on observations 

of financial instruments rates of return from a 

single sample what might cause estimation bias, 

especially, if data is characterised with statistical 

outliers or rates of return are asymmetrically 

distributed. Eventually, estimation risk 

materialisation results in suboptimal allocation. 

In this manner, sampling methods are used to 

overcome the unfavorable outcome of identified 

estimation risk. In this paper, many input data 

samples are drawn either from an empirical 

distribution or a theoretical distribution in 

order to minimise the risk of not receiving an 

optimal solution to the investment portfolio 

optimization task. Thus, the results are an 

average of proportions wi derived from multiple 

scenarios. Michaud (1998) pioneered this 

technique for asset allocation. Orwat-Acedańska 

and Acedański (2013) summarised that mostly 

the phases of a portfolio formulation procedure 

in accordance with the Michaud’s sampling 

methods approach are as follows: 

Phase 1. Based on an initial sample – (k x n) 

matrix of rates of return observations – a l-

amount of subsamples of the same size as 

the initial sample is extracted. Subsamples 

may be taken from either an empirical 

distribution (bootstrapping methods) or 

from a theoretical distribution (Monte Carlo 

simulations). 

Phase 2. For each subsample j (j = 1, 2, … , n) an 

estimation of [optionally a E(rj) vector and] 

Cj (variance-covariance) matrix is done. 

 

Phase 3. [Optionally for defined minimal 

benchmark rate of return E(rb)] Proportions 

wj are attributed. 
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Phase 4. Subsample j investment portfolio 

proportions are averaged: 

 

 

 

  

 wp=
1

n
∑ wj

n
j=1  (15.) 

Scherer (2002) highlighted that, in comparison 

to the Markowitz framework (i.e. to mean-

variance optimisation), the allocation performed 

in the above manner is more diversified and is 

less susceptible to radical alterations often 

needed at an increased market volatility. Also, 

sampling methods may be used for a wide 

variety of financial instruments rates of return 

distributions and for risk measures other than 

variance, e.g. coherent CVaR. In this paper, the 

discussed methodology is further enhanced with 

the use of genetic algorithms as an optimisation 

technique (and alternative to Newton’s method) 

which is independent of adopted objective 

function and might be adjusted to real rates of 

return distributions as stated in Chang et al. 

(2000).  

Genetic algorithms framework 

Genetic algorithm’s framework is classified as a 

subcategory of evolutionary algorithms where 

the prime objective of a computation process is 

to emulate operations directly from the 

Darwinian natural selection which follows the 

survival-of-the-fittest principle as described in 

books, e.g. Goldberg (1989) or Michalewicz 

(1996). Following, Engelbrecht (2007) provides 

that chromosomes (or individuals ci) are 

grouped in a population in which a gene gi is an 

exclusive characteristic of a chromosome and an 

allele ai is the gene’s value. In specific, genetic 

algorithms seek an optimal solution via 

population manipulation which size does not 

change throughout iterations (or generations) of 

possible outcomes. Mitchell (1999) emphasizes 

that a typical algorithm follows three steps. 

First, a population of individuals has to be 

established. Second, the selection of adequate 

chromosomes has to match the best fitness 

function value criterion. Third, for a creation of 

next generations, the crossover process is 

compulsory and solutions shall mutate. 

Chromosomes that are meant to survive until 

next iterations are evaluated in terms of their 

fitness function values f. Thus, an evaluation 

operator is intended to attribute a grade to an 

individual outcome in respect to its measure of 

fitness. Subsequently, with the use of a selection 

operator, as stated in Yang (2006), the 

population structures that are characterized 

with higher fitness function values are 

duplicated, whereas population structures that 

are marked with lower fitness function values 

are rejected. Whitley (2001) concludes that 

simply the fitter individual the more likely it 

survives and forms a set for further iteration. 

In order to derive a new individual (offspring, 

oi), the crossover operator matches selected 

parents at a crossover point, as explained in 

Schmitt (2001). Therefore, every prospective 

result incorporates properties of the previously 

picked chromosome pair, though, is different 

from the starting generation. Finally, entire 

procedure is replicated and another pool of 

solutions with a satisfactory value of fitness 

function crossover to produce next generation is 

obtained. Figure 1. is a graphical illustration of 

the phases of construction of a new generation 

of chromosomes. 

 Selection  Crossover  

String A  String A  Offspring 1 (AxB) 

String B  String B  Offspring 2 (AxB) 

String C  String B  Offspring 3 (BxD) 

String D  String D  Offspring 4 (BxD) 

…  …  … 

 

Figure 1: Construction of a new generation of chromosomes 
 

Source: Own elaboration. 
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All additional alternations are made within the 

individuals with the use of mutation operator. 

Random changes are slight and plausible to 

occur in all genes. Consequently, different set of 

potential candidates that are gained from 

original chromosomes is calculated.  

Iterations proceed until the algorithm reveals no 

improvement in solutions fitness function value. 

It is apparent information that an optimal 

outcome is approached. Otherwise, the process 

continues to fixed termination criterion 

fulfilment. Kumar et al. (2010) emphasise that 

termination conditions are mostly met if, e.g. an 

early acceptable solution is obtained, a shortage 

of funds or time is observed, a predetermined 

number of iterations is done, or iterations do not 

provide any additional information value. 

Selection operator 

All selection operators are attributed 

to selection pressure. Goldberg and Deb (1991) 

and Bäck (1994) relate selection pressure to 

time interval from the beginning of a genetic 

algorithm’s exploration until the point in which 

an uniform population is produced. If selection 

pressure is recognized at a too low level than 

genetic algorithms convergence rate is too low 

in terms of an optimal result. Conversely, if 

selection pressure is recognised at a too high 

level, than the population is devoid of required 

diversity.  

Thus, in this paper, a tournament selection is 

used where a random pool of chromosomes is 

separated from the total population. Next, the 

group is evaluated in terms of fitness function 

values and prime individual is allowed to 

crossover as stated in Pereira (2000). Whole 

process is repeated n-times to fill the mating 

pool. Formally, in tournament selection the 

selection probability ps of an individual ready to 

reproduce is defined as: 

 

 >? =   @AB C DE C D
ABE ,         " ∈ G1, # −  ! −  1H

0,           " ∈ G# −  !, #H  
(16.) 

where m is the extracted set of chromosomes. In 

case when separated tournament is not 

of considerable size in comparison to 

population, selection algorithm does not allow 

the fittest individual to dominate. However, as 

referred in Razali and Geraghty (2011) if the 

detached group is heavily undersized in regard 

to population, it is more likely that inadequate 

outcomes will be selected. Figure 2. depicts a 

tournament selection mechanism. 

 

 Random ci  Fittest ci  

c1 = 1  c4 = 4  c4 = 4 

c2 = 2  c2 = 2   

c3 = 3     

c4 = 4     

 

 

Figure 2. Tournament selection method 
Source: Own elaboration. 

Crossover operator 

Throughout crossover the selected individuals 

blend information they carry (from previous 

generations). Spears and Anand (1991) noticed 

that for larger populations’ crossover process 

assures that genetic algorithms avoid random 

decisions and outputs are precisely pursued into 

anticipated range of solutions. Selection 

mechanisms draw appropriate chromosomes 

out of the population. However, it is important 

to control if newly created offspring is not an 

exact copy of its predecessors. This may indicate 

that one individual was set to a role of two 

parents. Similar operations should be limited to 

enhance the algorithm’s computation 

performance.  



Journal of Financial Studies & Research                                                                                                                            8 

_________________________________________________________________________________________ 

______________________ 

 

Mateusz DZICHER, Journal of Financial Studies & Research, DOI: 10.5171/2022.594636 

In that manner, in this paper, a two-point 

crossover operator is used where parental 

individuals are partitioned in two randomly 

specified break points. Therefore, three 

segments are obtained accordingly. Hasancebi 

and Erbatur (2000) state that the gene 

replacement procedure is completed by a swap 

of either outside segments or inner part of a 

chromosome. It is useful to notice that 

regardless of an exchanged gene sequence the 

final solution will be identical. For best 

illustration two chromosomes encoded such as 

c1 = [1 1 0 0 1 0 1 0] and c2 = [0 1 1 0 1 1 0 0] are 

considered. Two-point crossover break points 

are randomly set. First segmentation is done 

after the second gene and second segmentation 

is done after the third gene in both parental 

individuals bit strings. So that sub-vectors are as 

follows: 

 

c11c12c13 = G1 1 ⋮ 0 0 1 0 ⋮ 1 0H; 
c21c22c23 = G0 1 ⋮ 1 0 1 1 ⋮ 0 0H. 

In a reproduction procedure, outer sections are 

exchanged. Sub-vector c11 swaps with c21 and c13 

with c23 such as: 

c21c12c23 = G0 1 ⋮ 0 0 1 0 ⋮ 0 0H; 
c11c22c13 = G1 1 ⋮ 1 0 1 1 ⋮ 1 0H. 

Consequently, next generation of chromosomes 

is attained, precisely o1 = [0 1 0 0 1 0 0 0] and o2 

= [1 1 1 0 1 1 1 0]. Bäck (1996) stresses that a 

two-point crossover method is more likely 

to preserve top genes until next iteration, in 

comparison to popular single point crossover, 

and it could be extended to N-point 

reproduction. 

Mutation Operator 

Mutation operator is implemented to retain 

diversity of a population. In particular, a genetic 

algorithm uses mutation to omit early 

convergence to a local optimum and to refrain 

from premature solutions. Mutation probability 

pm is usually a constant value what implies that 

all chromosomes are equally likely to mutate, 

regardless of their assigned fitness function 

values. However, Marsili-Libelli and Alba (2000) 

noted that it is more efficient to adopt a 

mutation operator which is a function of fitness. 

Typically, an adaptive mutation operator 

identifies lower evaluated genes in highly fit 

individuals and afterwards improves their 

accuracy, whereas chromosomes with relatively 

smaller fitness function values hold increased 

likelihood of mutation, so that their role in 

population is enhanced. 

Therefore, in this paper, if f ̅is an average fitness 

function value of a population and a 

chromosome is characterized with fitness f then 

mutation probability is considered in two cases. 

If f ̅> f, mutation probability is kept random. If f ̅< 

f solution encoded in a chromosome is good 

enough to lower mutation probability to avoid 

schema disruption.  

Research Findings 

Input data 

In order to verify the practicality of the 

suggested approach, an investment in 10, 

diversified-by-sectors WIG20 traded blue-chip 

securities, i.e. CDR (gaming), CPS 

(telecommunication), KGH (metal extracting and 

production), LPP (clothing), PEO (banking), PGN 

(gas extraction and energy), PKN (crude oil 

extraction and production), PKO (banking), PZU 

(insurance) and SPL (banking) was assessed.  

Firstly, logarithmic rates of return were 

calculated based on historical daily prices of the 

above-mentioned securities for the trading days 

from January 1, 2015 until June 1, 2021 (1 602 

publicly available observations). Next, a risk 

benchmark was defined (i.e. WIG20 volatility) 

where it was assumed that the volatility 

(measured as standard deviation) of the risk 

benchmark σWIG20 should be calculated for at 

least three moving time intervals (i.e. 1M, 3M, 

and 6M). It was further adopted that if σWIG20 for 

the shortest-term interval was a higher value 

than for the medium-term interval and longer-

term interval, and if volatility for the medium-

term interval was a higher value than longer-

term interval (i.e. σWIG20_1M > σWIG20_3M >
σWIG20_6M� then a stress period, or simply a crisis 

was identified. The input data was segregated 

accordingly and assigned to subsamples q – 
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quiescent and c – stress. Further, to solve the 

optimization problem stated in the formula (9.) 

a genetic algorithm that utilises tournament 

selection, two point crossover and adaptive 

mutation operators was employed. The initial 

population size was settled at 100 chromosomes 

and entire procedure lasted for 500 generations 

– the adopted termination criterion regularly 

stopped the genetic algorithm after 500 

iterations (given an optimal solution was not 

received earlier). The allocation was performed 

for the end of 2019 (December 30, 2019) and 

further backtested at three moments, i.e. March 

31, 2020, June 1, 2020 and June 1, 2021 where 

the latter dates included market conditions  

related to SARS-CoV-2 pandemic influence on 

financial markets (increased volatility; Table 1.). 

 

 

Table 1: Risk benchmark volatility at December 30, 2019, March 31, 

2020, June 1, 2020 and June 1, 2021 

 

 December 30, 2019 March 31, 2020 June 1, 2020 June 1, 2021 

σWIG20_1M 0.009 0.0492 0.0268 0.0106 

σWIG20_3M 0.0095 0.0308 0.0321 0.0107 

σWIG20_6M 0.01 0.0229 0.0238 0.013 

Source: Own elaboration based on data from stooq.pl (available at November 1, 2021). 

Also, once the input data was segregated for 

both periods subsamples q and c, another data 

subsamples were drawn with replacement with 

the use of sampling methods either from an 

empirical distribution (bootstrapping methods) 

or a theoretical distribution (Monte Carlo 

simulations). Next, the symmetric variance-

covariance matrices Cq and Cc were constructed. 

Ultimately, the allocation was performed via 

minimization of the data subsamples c and q 

volatilities quotient with the use of defined 

genetic algorithms as an optimisation tool. The 

final results (i.e. portfolios) were an average of 

proportions and statistics obtained from 1 000 

formulation procedures as stated in Chapter 2. 

In the end, the received allocations were 

compared to proportions and portfolio statistics 

received with a classic Markowitz’s framework. 

Empirical results and analysis 

Baseline investment portfolio was formulated 

for the end of 2019 (December 30, 2019). It 

means that the input data included 1 247 

logarithmic rates of return for corresponding 

trading day observations (starting from January 

1, 2015). In line with the risk benchmark 

volatility criterion (i.e. σWIG20_1M > σWIG20_3M >
σWIG20_6M) the initial input data was segregated 

into subsamples q and c (with 327 and 794 

trading days observations respectively) and was 

characterised by individual securities volatilities 

as presented in Table 2. 

 

Table 2: Segregated data volatilities at December 30, 2019p 

 CDR CPS KGH LPP PEO PGN* PKN PKO PZU SPL* 

σ 0.0174 0.0196 0.0154 0.0152 0.0223 0.0211 0.0241 0.0196 0.0194 0.0175 

σc 0.0198 0.0218 0.0172 0.0163 0.0247 0.0195 0.0245 0.0213 0.0202 0.0170 

σq 0.0164 0.0186 0.0151 0.0151 0.0219 0.0215 0.0237 0.0188 0.0189 0.0174 

σc σq⁄  1.2044 1.1750 1.1345 1.0825 1.1274 0.9049 1.0342 1.1302 1.0705 0.9789 

 

* Naturally, noted volatilities within the c data set were anticipated to be higher in value than their counterparts in q. 

Nonetheless, such relation was not observed for PGN and SPL which, ceteris paribus, in relatively stable market 

conditions at Warsaw Stock Exchange remained more unexpected with more volatile rates of return. 

Source: Own elaboration based on data from stooq.pl (available at November 1, 2021). 

Next, out of initially segregated input data 

subsamples q and c, sampled data sets were 

further generated with both bootstrapping 

methods and Monte Carlo simulations. For 

newly obtained data sets corresponding Cq and 

Cc matrices were calculated. As such, 1 000 

optimisations were performed for constraints 

that included also no short selling. The results 

from iterations were afterwards averaged to 

finally obtain the minimal value of the quotient 
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of data subsamples c and q volatilities. 

Complementary, the Markowitz allocation was 

done for comparison. A summary of the 

optimised portfolio proportions and volatility 

statistics are included in Table 3. 

 

Table 3. Optimised portfolio proportions and volatility statistics at December 30, 2019 

 

 CDR CPS KGH LPP PEO PGN PKN PKO PZU SPL 

wBoot 0.0801 0.0802 0.1072 0.1182 0.0548 0.1282 0.1026 0.0805 0.1223 0.1261 

wMC 0.0824 0.0633 0.1013 0.1334 0.0625 0.15 0.1065 0.0711 0.0994 0.1301 

wM 0.05 0.0927 0.05 0.15 0.1073 0.15 0.05 0.05 0.15 0.15 

Bootstrapping volatility σc_Boot = 0.0107 σq_Boot = 0.0094 σc_Boot σq_Boot⁄  = 1.1383 

Monte Carlo volatility σc_MC = 0.0109 σq_MC = 0.0095 σc_MC σq_MC⁄  = 1.1474 

Markowitz volatility σc_M =  0.0125 σq_M = 0.0107 σc_M σq_M⁄  = 1.1625 

 

Source: Own elaboration based on data from stooq.pl (available at November 1, 2021). 

Thus, consistent for all considered allocations in 

comparison to Markowitz framework, firstly, the 

portfolio formulation procedure utilising 

sampling methods and genetic algorithms 

provided more diversified portfolios (i.e. with 

lower concentration). Secondly, the averaged 

volatilities for both subsamples q and c were 

lower and their lower quotients were observed. 

Also, mostly a flight-to-quality effect was 

observed for the considered averaged 

correlation spreads between subsamples q and 

c.  

Backtesting 

In order to verify if historically obtained market 

volatility-robust portfolios reduced the 

necessity of investment position rebalancing (to 

lower transaction costs) in following time 

periods an allocation backtesting was done. In 

that manner, optimised proportions analysed at 

the end of 2019 were exchanged for their next 

time period counterparts. A summary of 

backtesting volatility calculations is presented in 

Table 4. 

 

Table 4. Allocation backtesting and volatility statistics at March 31, 2020, June 1,  

2020 and June 1, 2021 

 

March 31, 2020 

Bootstrapping volatility σc_Boot_B1 = 0.0125 σq_Boot_B1 = 0.0107 σc_Boot_B1 σq_Boot_B1⁄  = 1.1763 

Monte Carlo volatility σc_MC_B1 = 0.0128 σq_MC_B1 = 0.0108 σc_MC_B1 σq_MC_B1⁄  = 1.1802 

Markowitz volatility σc_M_B1 = 0.0136 σq_M_B1 = 0.0111 σc_M_B1 σq_M_B1⁄  = 1.2256 

June 1, 2020 

Bootstrapping volatility σc_Boot_B2 = 0.0166 σq_Boot_B2 = 0.0110 σc_Boot_B2 σq_Boot_B2⁄  = 1.5113 

Monte Carlo volatility σc_MC_B2 = 0.0168 σq_MC_B2 = 0.0111 σc_MC_B2 σq_MC_B2⁄  = 1.5165 

Markowitz volatility σc_M_B2 = 0.0171 σq_M_B2 = 0.0112 σc_M_B2 σq_M_B2⁄  = 1.5329 

June 1, 2021 

Bootstrapping volatility σc_Boot_B3 = 0.0179 σq_Boot_B3 = 0.0118 σc_Boot_B3 σq_Boot_B3⁄  = 1.5169 

Monte Carlo volatility σc_MC_B3 = 0.0181 σq_MC_B3 = 0.0119 σc_MC_B3 σq_MC_B3⁄  = 1.5197 

Markowitz volatility σc_M_B3 = 0.0187 σq_M_B3 = 0.0121 σc_M_B3 σq_M_B3⁄  = 1.5404 

 

Source: Own elaboration based on data from stooq.pl (available at November 1, 2021). 

Having all things considered, it was observed 

that the suggested approach efficiently 

minimises the unfavourable effects of an 

increased market volatility in an investment 

portfolio formulation problem by providing less 

risky portfolios. Therefore, it seems that, 

surprisingly, not enough attention is paid in the 

literature to the use of multiple scenario 
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analysis in solving the portfolio formulation 

problem 

Conclusions 

In this paper, a model under the modified 

Markowitz’s approach with the use of sampling 

methods and genetic algorithms was developed 

to improve the efficiency of allocation in a 

portfolio formulation procedure at an increased 

market volatility. The suggested approach 

contributes to the existing methods of limiting 

the risk of not receiving optimal solutions in 

security allocations. Also, the research adds a 

rationale for the developed quantitative 

framework to be included in the literature and 

to practical use either in individual or 

institutional investor strategies. 

In reference to the obtained computational 

results, it was observed that, firstly, in order to 

obtain a more diversified investment portfolio, it 

is important to overcome the limitations of a 

single sample analysis that may be biased, 

especially, due to statistical properties of 

expectations of rates of return (e.g. if outliers 

are observed or rates of return are 

asymmetrically distributed). Therefore, a 

portfolio formulation procedure with the use of 

sampling methods and genetic algorithms as an 

optimisation tool was proved to provide a less 

concentrated allocation in comparison to, e.g. 

Newton’s method, used for optimization under 

Markowitz’s framework. Secondly, the analysed 

averaged volatilities values for both subsamples 

q and c, pertaining to market instances, were 

lower what resulted in their lower quotient and 

imply that investment portfolios formulated 

with the use of multiple samples derived either 

from an empirical distribution or a theoretical 

distribution are less risky. In the end, all of the 

above enhance the investment decision-making 

process. 

At present, however, this paper puts emphasis 

on model verification based on input data on 

WIG20 blue-chip securities so that all market 

parameters are local. Because of that, further 

research is required, inter alia, to ascertain if 

similar conclusions were directly applicable to 

other jurisdictions and, importantly, to different 

asset classes. Moreover, since sampling methods 

may be used for a wide variety of rates of return 

distributions and for risk measures other than 

variance, it would be interesting to advance the 

analysis with the use of, e.g. coherent CVaR. 
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