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Introduction 

 
Contemporary knowledge relating to graphs 
indicates that there is an ever-increasing need to 
process quantities of data in all fields of 
knowledge namely: commerce, 
telecommunications, logistics, finance and 
economics. 
 
A large amount of collected data without 
confirmation of proper analysis is useless.1 
Graphs are a method commonly used to model 
many objects. Objects that require efficient 
methods and computer algorithms. In the areas 
of knowledge discovery related to the depiction 
of a given process by means of graphs, the use of 
graphs is not as explored at present as the use of 
regulatory databases in practice. Furthermore, 

techniques that are originally designed for 
operational databases can be adapted to graph 
databases. 
 
Representing the graphical description of the 
objects, the relevant characteristic was taken 
into account by relating it to a quantitative 
characteristic and a qualitative characteristic 
relating to the relevant structure relationship 
specific to the analysis.  
 
It is worth noting that it has a positive effect on 
the classification process (e.g. treating a 
document as a graph increases the accuracy of 
the classification compared to a vector 
representation and at the same time reduces the 
complexity of the model).2 
 

Abstract 

 

An attack graph is a visual tool used to represent potential attack paths, that a cybercriminal can use 
to gain access to a computer system or network. It consists of nodes and edges, where Nodes 
represent resources such as computers, servers, applications or data. Edges represent dependencies 
between nodes, such as network connections or data flows. Attack graphs are visual tools used to 
analyse and understand different types of attacks, including cyber-attacks, physical attacks and 
terrorist attacks. These visualisations help security professionals, analysts and decision makers to 
identify trends, assess risks and develop defence strategies. Attack graphs are a valuable tool that can 
help organisations identify, assess and mitigate cyber security risks. They are easy to use and can be 
customised to suit different needs. 
 
Keywords: Attack graphs, Attack Model, Attack Graph 
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The literature discusses many graph classifiers 
that have a number of drawbacks. One of the 
most important is the phenomenon of obtaining 
the accuracy of the result of a given 
classification presented on decision tables.3 In 
an era of increasing digitalisation and 
dependence on information technology, cyber 
security has become one of the most important 
research and practice areas. Cyber-attacks are 
becoming more complex and more difficult to 
detect, requiring advanced analysis and 
monitoring methods. Directed graphs offer a 
powerful tool for modelling and analysing 
structures and data flows in the context of cyber 
threats. The aim of this study is to explore and 
evaluate the use of directed graphs for analysing 
cyber-attacks, identifying attack paths, detecting 
malicious activity and improving the overall 
security of networks.  
 

Purpose of the study 

 
The main objective of the study is to develop 
methods and tools based on directed graphs to 
enable Data Flow Modelling, understand and 
visualise data flows between systems and 
identify potential points of vulnerability to 
attacks. 
 
Identification of Attack Paths: Analysis of 
potential attack paths that cybercriminals can 
use to gain access to resources 
 
Detection of Malicious Activity: Development of 
algorithms to detect unusual patterns in graphs 

that may indicate malicious activity. System 
Dependency Assessment: Analysis of the 
dependencies between different systems on the 
network and their impact on the overall security 
state. Strengthening Protection Measures: 
Proposing protection measures based on the 
results of graph analysis that can help prevent 
future attacks.  
 
Scope of the Study  

 

The study will cover the following main areas:  
 
Directed Graph Theory: An overview of the basic 
concepts and properties of directed graphs and 
their application in cyber security. Modelling 
and Visualisation: Techniques for modelling and 
visualising data flows and relationships between 
systems using directed graphs. Graph Analysis 
Algorithms: Development and implementation 
of algorithms for analysing attack paths, 
detecting cycles and unusual patterns in graphs. 
Practical Cases: Analysis of real cases of cyber-
attacks using directed graphs, identification of 
vulnerabilities and proposal of protection 
measures. Evaluation of Effectiveness: 
Evaluation of the effectiveness of the proposed 
methods and tools in real scenarios and their 
comparison with existing techniques. In the 
following, the symbolic designations of the 
formulas used in the paper, by which the 
individual graph models are described, are 
presented: 

 

 
 
the set of graphs N ; the set of contrasting subgraphs characteristic of the set of graphs P with respect to 
the set of graphs N  

 

 
4 
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The aim of this paper is to discuss and analyse 
the use of a pattern for the automatic 
classification of structures relating to graphs. 
The author of this paper proposed an algorithm 
using appropriate contrast patterns and 
common patterns. The algorithm was developed 
on the basis of a domain-wide method. The 
collected information was visualised on the 
basis of an appropriately selected algorithm for 
a given graph. 
 
The paper is based on the thesis: "It is possible 
to develop a universal, modular, scalable, simple 
and, above all, efficient algorithm for object 
classification, modelled by graph structures, 
using minimal structural contrast patterns." 
 
The study was based on a statistical and 
descriptive summary of the algorithm created. It 
presented descriptive and methodological 
information. Its conclusions were related to the 
material as a whole.  
 
The work is based graphs and solid graph 
 
General Information on Graphs 

 

A regular graph of degree n (n-regular graph) is 
a graph in which all vertices are of degree n.5 
 
A full (complete) graph is a simple graph in 
which for every pair of vertices there is a 
connecting edge. A complete graph on vertices 

has card(E(G)) = n(n 2 -1) edges and is denoted 
by: Kn.6 
 
A tree is a coherent acyclic graph (it has no 
cycle). Trees are used to represent hierarchies 
of data. In computer science, many data 
structures are based on a tree topology (e.g. 
binary trees, search trees, balanced AVL trees)7 
The vertices of a graph represent specific data, 
while the edges represent relationships between 
them (e.g. parent-child relationships).8 
 
Random graphs are another type of graphs 
affecting the present analysis. 
A random (random) graph is one that is 
generated by a stochastic process. Many 
algorithms have been proposed to generate such 
graphs. They have a similar workflow, which 
involves randomly connecting an initial set of n 

vertices with edges. The most popular Erd˝os-
Rényi model [Bol01]  
 
(denoted by G(n, p)) assumes that edges are 
inserted independently between each pair of 

vertices with probability p. The expected value 
of the number of edges of a random graph is 

 .  
 
Random graphs are often used in probabilistic 
processes aimed at proving the existence of a 
graph with certain predetermined properties.9 
 
The following are basic typologies of graph 
structures that are often used to describe 
quantitative databases and the quality of 
databases. 
 
By detecting relevant patterns relating to graph 
descriptions, appropriate criteria are 
determined, an example of which is support.  It 
represents a more computationally complex 
task than similar criteria described on the basis 
of numerical summaries. One of the most 
labour-intensive tasks is to produce solutions to 
subgraph isomorphism problems. The literature 
distinguishes two basic approaches to 
discovering graph patterns.10 
 
The first is based solely on the detection of 
coherent subgraphs. The second, on the other 
hand, is complementary to the first and involves 
detecting all subgraphs as well as the 
inconsistent ones.  
 
Using subgraphs increases the likelihood of 
obtaining an appropriate analysis.11 Graphs are 
usually represented in a variety of ways, usually 
by a two-dimensional plane. It is based on the 
principle that vertices are connected by edges. 
They are usually represented on the basis of two 
basic parameters, namely, time complexity and 
memory complexity. Data are usually described 
on the basis of a neighbourhood matrix.12 

 
The neighbourhood matrix stores information 
relating to the connections between vertices of 
graph G. This matrix is of dimension card(V (G)) 
on card(V (G)) and its columns and rows are 
indexed by the consecutive vertices of the graph. 
The element of matrix A contains the value of 
the edges starting from a given vertex. It can be 
used to record a given oriented and non-
oriented graph. When referring to simple graphs, 
it refers to a specific set.13 
 
The data structure defining the matrix above is 
based on very low time complexity. The basic 
operations performed on the matrix, i.e. deletion, 
addition, checking whether there are enough 
edges corresponding to the correct interval 
between edges, are performed in constant time. 
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Operating quickly, there is a higher memory 
requirement O(card(G(V ) 2 )).14 
 
When choosing an appropriately selected 
structure, it is first necessary to select the 
appropriate type of operation performed with 
the graphical representation of the data.  In 
practice, the matrices selected usually use 
graphs with a small number of vertices due to 
their high memory complexity. Given large 
graphs with a larger number of edges, it is 
necessary in this case to extract an appropriate 
amount of list-based data. The figure below 
shows a graphical representation of the data 
based on the matrices discussed above. 
 
The table above shows a graphical 
representation of the relevant matrices on the 
basis of which the corresponding directed data 
analysis can be created on the basis of the 
selected graph. The data contained are 
numbered on the basis of specific Arabic 
numerals, while the edges are identified using 
Roman numerals. 
 
Overview of Basic Methods and Problems 

 

The fundamental problem associated with the 
hypothesis relating to the integral is the 
problem of isomorphism. This problem involves 
determining whether one graph is adequately 
contained in another. From a practical point of 
view, this can be determined by checking 
whether the principal graph contains an 
isomorphic subgraph contained in the base of 
the algorithm. Relative to the latter, the 
subgraph isomorphism problem is much more 
difficult and belongs to the class of NP-complete 

decision problems. The proof of NP-
completeness is based on a reduction of a 
classical NP-complete problem: the problem of 
finding a clique in a graph [GJ90].15 Acting on the 
basis of the classical universal algorithm, one 
solves the algorithmic problem based on the 
method of complete review of all isomorphisms 
of a subgraph. Indeed, applying the subgraph 
isomorphism problem often takes a different 
form from the standard one. Typically, two types 
of graphs are used in this type of algorithm: a set 
of model graphs and a set of graphs. The 
difference between the two is that model graphs 
are taken into account when a reaction of an 
algorithm occurs.16 Then, when a problem arises, 
in order to solve it, one has to determine for the 
graph another set of subgraphs isomorphic to 
the model graph contained in the input graphs. 
Knowing the appropriate structure of the model 
graphs is used to analyse the designed algorithm 

in the preprocessing phase, referring to the 
acceleration of classification. 
 
This paper is based on an algorithm, the 
purpose of which is to solve the subgraph 
isomorphism problem referring to the 
polynomial (O(n) = n 4 ) as a function of the total 
number of vertices in the model graphs. 
Preprocessing involves, among other things, 
transforming the sets of a given graph into a 
decision tree model in which the individual 
columns and rows of the matrix are stored. The 
problem, which is a huge disadvantage, is the 
huge internal memory requirement through the 
construction of the decision tree. In the extreme 
case, this demand increases as the total number 
of vertices in the model graph increases. This 
then limits the ability to make a sufficient 
number of solutions. The canonical label of the 
graph is worth mentioning at this point.17 

 

The basis for presenting a suitable graph matrix 
is its representation, but it is not always 
mutually ambiguous. Its representation usually 
determines the topography being analysed 
without determining its representation. Every 
graph has a number of different representations; 
usually they are of the same type depending on 
how its edges and vertices are ordered. For 
example, any graph has (card(V (G)))! s 
neighbourhood matrix and (card(V (G)))! ∗ 

(card(E(G)))! of the neighbourhood incidence 
matrix and neighbourhood lists. The ambiguity 
of the algorithm means that, in most cases, it is 
not possible to quickly determine whether two 
representations are of the same graph. To 
answer the problem described above, a 
computationally expensive isomorphism needs 
to be created.18 
 
The canonical label of a graph cl(G) is an 
unambiguous, deterministic representation of 
the graph in the form of a code (character 
string). Each graph has only one canonical label. 
It is independent of the ordering of vertices and 
edges, and is fully determined by the topology of 
the graph (and any labels of vertices and edges). 
Furthermore, the canonical label determines the 
topology of the graph, i.e. knowledge of the label 
is synonymous with knowledge of the graph 
structure.19 The basic properties of the 
canonical label of a graph follow from its 
definition. Usually such algorithms include 
labels; a label which determines the 
isomorphism of graphs (i.e. isomorphic graphs 
have the same label: G0 ∗= G 

⇐⇒
 cl(G0 ) = cl(G))) 

and labels that define an ordering relation 
between the graphs (i.e. G0 < G 

⇐⇒
 cl(G0 ) < 

cl(G)).20 
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The definition of a label does not specify either 
its method or its content. A common approach is 
to arrange the rows, columns and notation 
appropriately by referring to the relevant 
character string. Determining the appropriate 
label then boils down to finding a code that is 
their minimal graphical lexicon. Thus, by looking 
for vertices to which a minimal matrix 
corresponds, the corresponding vertices are 
determined (card(V (G))!).21 

 

Canonical labels are mainly used to solve the 
isomorphism problem. The computational cost 
of determining the canonical labels of a graph is 
comparable to the cost of a single isomorphism 
test between two graphs of the same size.  
 
On the other hand, the time cost associated with 
comparing two canonical labels (i.e. 
isomorphism statements) is negligible 
compared to the former. The use of canonical 
labels is, therefore, particularly desirable where 
individual graphs participate in isomorphism 
tests repeatedly.22 

 
The canonical label can also be used as an 
alternative method. Its undoubted advantages 
include: one-dimensionally small memory 
requirements (mapping cl(G) → G as well as G → 

cl(G)), determinism, no restrictions on the 
structure of the represented graph and well-
defined and order. 
 
The result of these advantages is used as an 
index in graph databases. The property of order 
relations guarantees the execution of search 
operations in logarithmic time (binary search). 
On the other hand, it has a number of 
disadvantages: it is intended to be read-only, 
almost none of the operations typical of other 
graph representation methods can be dug out, 
and it is not very human, readable and 
understandable.23 
 
The practical application of canonical labels can 
testify to the fact that comprehensive, 
impressive hardware solutions are available to 
support their calculation process. The proposed 
hardware architecture runs 10 to 100 times 
faster than a software solution. 
 
An important aspect of the article is the 
determination of the support coefficients 
responsible for qualitatively defining the given 
algorithm. The next subsection describes the 
support of a given algorithm. 
 

Analysis of the Graph Algorithm based on the 

Contrast Common Pattern Classifier (CCPC) 

Method 

 

This subsection discusses the CCPC concept on 
the basis of which the attack graph algorithm 
was created. It is based on the contrast pattern, 
on which the basic properties were created and 
its operation is discussed. The primary task of 
the method is to classify data depicted on the 
basis of graphs. However, in this type of method, 
it is not always possible to use the appropriate 
subgraphs in order to obtain a suitable 
algorithm. If classification is still not possible, 
then the graph will remain unclassified. The 
operation of the algorithm results in the 
determination of membership coefficients for 
the corresponding test graph taking into 
account the individual decision classes. The 
membership coefficients are calculated using 
the relevant support parameters and the 
increase in support of the test graph's 
subgraphs, which are contrastive or common 
subgraphs. Determining the appropriate 
coefficients is based on the design of the 
corresponding schema using a relational 
database.24 
 
Suppose that G is a set of training graphs and T 
is a text graph. The master graphs given the 
algorithm are divided into subsets of graphs 
belonging to the same decision group as defined 
by the algorithm: G1, ..., Gn; G = S i=1..n Gi . Let 
C( Min G\Gi)→Gi be the set of all minimal 
contrastive subgraphs for Gi relative to the set of 
graphs (G\ Gi), where i ∗ h1, ni . Let MMin 
G1,...,Gn be the set of all minimal common 
subgraphs for G1, ...,Gn .25 

 
The proposed classification algorithm requires 
the selection of ways to calculate the coefficients 
of decision class membership. A strategy for 
calculating the coefficient based on contrasting 
(i.e. scConA or scConB) and common (i.e. 
scComA or scComB) subgraphs is needed.26 
 
The general scheme of the CCPC algorithm is 
based on the following steps:  
 
1. Determine the value of the scConA(T) 
(scConB(T)) coefficients for all decision classes.  
 
2. Assign the test graph T a class label that 
corresponds to the largest value of scConA(T) 
(scConB(T)).  
If classification is not possible then: 
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(a) Determine the value of the coefficients 
scComA(T) (scComB(T)) for those decision 
classes for which the value of the coefficient 
scConX is maximum (i.e. scConX(T) = 
max(scConX(T))).  
 
(b) Assign to the test graph T the class label that 
corresponds to the largest value of scComA(T) 
(scComB(T)). If classification is not possible 
then leave the graph as unclassified.27 
 
Based on the assumptions discussed above, an 
algorithm based on the attack cycle in relation 
to the attack graph was constructed. The 
following table presents an example database 
with training graphs (Z). The graphs were 
divided into two disjoint subsets according to 
the decision class membership (Z = ZA S ZB). 

 
The choice of the above representation base for 
certain algorithms is conditioned on the criteria: 
runtime and memory requirements. Taking into 
account the above classification, all subgraphs 
are represented in a way that makes it possible 
to examine the corresponding graph pattern 
reflecting the database and the algorithm 
contained in it. When performing this type of 
operation, time is critical to the quality of the 
algorithm. Graphs are usually represented on 
the basis of structures, occupying little memory. 
Given these specific conditions and limitations, 
the best way to represent the detected 
subgraphs will be the canonical label.28 
 
The canonical label does not impose any 
additional restrictions on the graph topology 
(e.g. graph orientation) and labels. Knowledge of 

specific properties is usually used to design an 
appropriate canonical label.29 
 
Characterisation of the Attack Cycle based on 

a Selected Graph Algorithm 

 

Given the analysis of cyber-attack cases to date, 
it is worth noting in them a certain systematic 
repetition of a given pattern, which the 
literature refers to as the process of a cyber-
attack. The literature perceives this attack as a 
short-lived event that cannot be countered. 
Indeed, it is a momentary process, for which a 
specific set of actions performed in the right 
order with respect to time and place of duration 
is gathered.30 
 
This work considers the general life cycle of 
attacks in relation to the following phases: 
  
 (S1) identification and definition of attack 

targets – pre-planning, 
 (S2) reconnaissance,  
 (S3) weaponisation,  
 (S4) delivery of malicious code,  
 (S5) launch and control of malicious code 

(cyber execution and command & control),  
 (S6) achievement of objectives,  
 (S7 ) end of attack and cover-up of tracks.31 
 
The literature considers two basic cycles of 
attack activity, namely: S1 and S3. The 
aforementioned phases refer, practically 
speaking, to the planning and termination of 
attacks. The other cycles of attack algorithms 
are reflected in the literature and are described 
based on the table below. 
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Table l: Phases of the overall life cycle of a cyber-attack 

 

Phase name Description of the general functioning of attacks 

Reconnaissance (S2) Identification and selection of (technical) attack 
targets by recognising the target environment, e.g. 

TCP port scanning, indexing of websites, conference 
materials, email lists, social networks, information 

on (specific) technologies used, socio-technical 
phishing for information and data, etc. 

Weaponisation (S3) Preparation of a cyberweapon, i.e. special software, 
e.g. integration of Trojan horses with other 

malicious code (exploit) to create a deliverable 
payload using an automated tool (weaponizer). In 

cases where there is no need to build or configure a 
software package, this step can be skipped. 

Delivery (S4) Copying the cyberweapon into the target 
environment, e.g. using the most common modes of 

delivery (e.g. in APT attacks), which are, for 
example: infected email attachments, crafted or 

maliciously modified website software (e.g. applets, 
links), SQL injection, infected USB-attached storage 

media. 
Launch and control of malicious code (cyber 

execution) (S5) 
1. The running of malicious code (once the 

cyberweapon has been delivered to the target 
environment), e.g. as a result of exploiting a 
vulnerability/software vulnerability in an 

application or operating system or manipulating a 
user of the target system. 

2.  Installation of additional malicious code, e.g. 
Remote Access Trojans (RATs), placing backdoors in 
the target system to establish a permanent channel 

of communication between the infected victim's 
internal environment and the malware's command 

and control centre (external environment). 
3.  Controlling and controlling the infected 

environment, e.g. escalating or gaining additional 
privileges, system privileges, installing residual or 

additional malicious code (e.g. 
backdoor/Trojan/rootkit), modifying the file 

system, viewing or modifying system databases. 
Achievement of objectives, action (S6) To take actions directed at achieving the original 

objectives, e.g. copying data, compromising the 
integrity and/or availability of data, gaining access 
to the victim's email to use it to penetrate deeper 
into the infected infrastructure, or using email to 

further spread the ongoing attack. Physical 
destruction of an organisation's infrastructure is not 

excluded in this phase. 
End of attack and cover-up (S7) Completion of the attack, can be combined with the 

removal or masking of traces of the attack and 
malicious code activity. Optional stage, depending 
on the targets and the technological sophistication 

of the aggressor. 
Source: I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition 

(Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 

2005. 

 
 
This table illustrates an analysis of the general 
emergence of the life cycle of a cyber-attack. 
Creating a picture of it on the basis of the graph, 
it is noted that there is no possibility of 
returning, given time and space, to its initial 

phases and that each of them must occur one 
after the other. Each of the phases has its own 
dynamics of the attack process.The figure below 
allows us to illustrate in graphical form how the 
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transitions between the different phases of an 
attack are directed. 
 
From a practical point of view, an attack on an 
organisation or a company, an institution 
usually has no end in sight. This type of attack, 
given its systematic manner, pretends to have 
an effect without assuming that time is an 
important factor in the process. Once the 
intended effect is achieved, a new target is set, 
starting all over again. It is, therefore, assumed 
that cyber-attacks can be repeated and that the 
interruption of the current attack results in the 
attacker starting a new cycle.32 
 
Based on the diagram above, referring to the 
method described above, the present algorithm 
was built. 
 
Let us assume that Tn ∈ [0, +∞)) denotes the 
time necessary to successfully complete the Sn 
phase (n = 1, 2, ..., 7). Hereafter, we will refer to 
these times as the necessary phase durations. 
We assume that Tn is a random variable with 
distribution Fn (t) = Pr{Tn< t} and finite 
expectation value ETn (ETn = ∫0 +∞tdFn (t) < 
+∞). Let τn ∈ [0, +∞) be a random variable with 
distribution Gn (t) = Pr{τn< t} and finite 
expectation value Eτn (Eτn = ∫0 +∞tdGn (t) < 
+∞) denoting the time after which a stop can 
occur. Here, for the sake of generalisation, we 
will make the assumption that the current attack 
cycle can also end in the pre-planning phase. 

Therefore, the dwell time in each Sn phase is 
equal to βn = min{Tn , τn} (n = 1, 2, ..., 7). A 
conforming graph of transitions between states 
is shown in Figure 2. The return to state S1 
symbolises the start of a new cyber-attack – a 
new cyber-attack cycle. The arcs of the graph of 
transitions between phases of the cyber-attack 
cycle are described by the times that may be 
followed by a transition to the next phase or, as 
a last resort, the termination or interruption of 
the attack.33 
 
Here, it is additionally assumed that the 
necessary durations of the individual phases are 
stochastically independent, i.e. the random 
variables T1 , ..., T7 are independent random 
variables. Furthermore, let the random variables 
τ1 , ..., τ7 also be independent random variables. 
Stochastic independence of the random 
variables Tn and τn (n = 1, 2, ..., 7) is also 
assumed. 
 
Duration of a Single Cyber-attack Cycle 

 
Assume that αn ∈ {0,1} for each n = 1, 2, ... 7 is a 
binary random variable** - such that αn = 1 
when the event {Tn < τn} occurs and αn = 0 
when {Tn ≥ τn} occurs. Let Θ ∈ [0, +∞) denote 
the duration of a single cyber-attack cycle. Given 
the designations and assumptions made, the 
duration of a single cyber-attack cycle Θ can be 
written as follows: 

 
 

  

 
From equation 1, it follows that the duration of a 
single cyber-attack life cycle Θ is the sum of the 
dependent random variables of the residence 
times in the different phases of the attack cycle 
dependent on the behaviour of the attack 
process in the phases preceding a given phase. 
 

Let   and 

. Therefore, on the basis 

of the assumptions made about the 
independence of random variables , 

distribution of a random variable
 

is expressed by the formula: 
 

 

 
Therefore, the expected value of a random variable  takes the form: 

 

 

Expected value of a random variable is  

 

 
 



9                                                                                                      Journal of Information Assurance & Cyber security 
___________________________________________________________________________________________________ 

 

 

_________________ 
 
Jerzy Dorobisz, Journal of Information Assurance & Cyber security, https://doi.org/10.5171/2024.384721 

Hence, ultimately 
 

 

From the expected value property of a random variable [8], it follows that the expected value of the 
duration of a cyber-attack cycle  takes the form: 
 

 
 
Based on the assumptions made about the independence of random variables  ,  

 
the value of the expected cycle length of a cyber-attack  can ultimately be written as 
 

 
 
Where for is given by formula (3),  and for  - pattern (4). 

 
Source: Hoffmann R. The general life cycle of a 
cyber-attack and its Markovian model. Economic 
Problems of Services. 2018; vol. 1, 2/2018(131): 
121-130. 
 
The above-described algorithms illustrate a 
model of the general life cycle of attacks based 
on a graph drawn up accordingly. Based on the 
literature, this cycle moves on the basis of two 
phases: identification and definition of targets, 
which are considered as planning. Given that, 
the chosen graph model is based on a layout 
drawn up on the principle of a graph defining 
the different phases of its cycle. It is assumed 
that the attack can be aborted while the 
aggressor is in any phase of the attack. In 
practice, the interruption of the attack can occur 
not only at the will of the cybercriminal, but also, 
and perhaps above all, because of the cyber 
defence system in operation.34 
 
Taking into account the developed graph model, 
a data analysis based on the stationary 
probability of the individual phases of its action 
was calculated, which found the individual 
action relating to its practical application.  It 
should be pointed out here that, from a practical 
point of view, it is necessary and sufficient to 
know the expected values of the individual 
times and to estimate the probability of success 
of the completion of the individual phases of the 
attack cycle in order to estimate the above 
characteristics.35 
 
The easiest to classify turned out to be set 
number 1, which was so that the set was the 
smallest. All algorithms (except random and 
frequency) achieved a classification accuracy of. 
The graph model proved superior to the hybrid 
model. The algorithm based on determining the 

maximum common subgraph achieved near 
classification efficiency for a graph of size 30 
vertices. The CCPC algorithm needed 20 more 
vertices to get a better result.  
 
For set number 2, algorithms using the hybrid 
representation achieved the highest 
classification accuracy. The CCPC algorithm was 
superior to the other methods based on the 
graph model. Set number 3 was the largest set 
available. In this case, the CCPC algorithm was 
the best algorithm. The same classification 
accuracy was achieved by a method with clever 
feature extraction of subgraphs based on the 
hybrid model, but it needed three times as many 
features (120 features) as the CCPC algorithm 
(40 features). For the last collection of K7-series 
documents, the CCPC algorithm again achieved 
the best classification accuracy.36 
 
In summary, the CCPC algorithm proved to be 
the best algorithm for three of the four datasets 
analysed. For collection number 4, it scored 
worse than the leader in this category. The 
algorithm using the hybrid document 
representation had a better classification 
performance in this case.  
 
Experimental studies conducted on four real-
world datasets confirm the height of the 
effectiveness of the method based on contrast 
patterns for document classification.  
 
The CCPC algorithm achieved the best accuracy 
among the methods analysed, for three 
collections of websites. The proposed algorithm 
makes it possible to assign a category to a web 
page describing its subject matter without 
necessity. It can be used in search engines as 
well as in knowledge portals to replace the 
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manual categorisation of documents with an 
automatic process and to provide higher as a 
service. 
 
Conclusions 

 

 On the basis of the above-discussed analysis of 
the database relating to four real-world sets, 
which confirm the height, and at the same time 
the effectiveness, of a method based on 
contrasting patterns developing the relevant 
phases of attack cycles, the CCPC algorithm best 
classifies the attack data among the other 
methods building the database. 
 
The proposed algorithm makes it possible to 
read graphically depicted data. Algorithms are 
used to describe subjects without the need for 
human resources. This type of database is 
usually used via a web search and also on a 
knowledge basis to replace paper 
documentation using an automatic process to 
provide the individual phase of attack cycles, 
which translates into the quality and speed of 
the detected information. 
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