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Introduction 

 

Memory-based logic synthesis of index 

generation functions (IGF) gained a lot of 

interest due to the applications of those 

functions (Sasao (2011, 2017, 2020)) in 

realizing pattern matching circuits. In the 

literature, there are many examples of using 

those functions in telecommunication, 

cybersecurity, and the Internet of Things for 

devices such as virtual routers and malicious 

data detection systems. What is more, the 

concept of a hardware implementation of 

index generation functions has been reported 

by Sasao (2020) as the key device in the 

network hardware. 

Index generation function maps unique 

integer value {1,2, … , �} to elements of a set 
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that consists of K different binary vectors, 

whose length equals N. Other assignments are 

left unspecified and function returns zero. The 

important property of those functions is that 

they are not fully defined, i.e., � ≪ 2	 . Thus, 

they can be efficiently minimized and 

implemented using fewer variables than N. 

In the literature, techniques such as variable 

reduction (Borowik and Łuba (2014), Sasao 

(2020)) and functional decomposition 

(Mazurkiewicz (2020a, 2020b), Nagayama et 

al. (2020)) are used very often to minimize 

memory usage. However, linear 

decomposition (using XOR gates) has been 

identified as being very efficient (Łuba et al. 

(2016), Mazurkiewicz and Łuba (2019), Sasao 

(2017, 2020)), i.e., for M-out-of-N coders. 

Interestingly, logic synthesis methods can be 

easily transferred and adapted to the field of 

knowledge discovery and data mining 

(Borowik (2014), Borowik and Łuba (2014)), 

i.e., to minimize the number of attributes and 

remove redundant decision rules. 

 

Using the linear decomposition, an index 

generation function is implemented as a 

composition of a linear transformation L 

(using EXOR gates) and a general function G 

that is implemented using memory 

(RAM/ROM). Linear transformation, i.e., a 

composition of several linear functions, 

reduces the number of variables from N to P. 

Thus, 2
�-bit memory is required to 

implement function G. 

 

In this paper, we analyze how the properties 

of symmetric index generation functions, i.e., 

their structure, influence the process of their 

minimization. In particular, we focus on the 

application of the existing heuristic linear 

decomposition algorithm by Mazurkiewicz 

and Łuba (2019). Symmetric index generation 

functions are a special class of index 

generation functions. We prove that existing 

heuristic methods can be easily applied to 

minimize this class of functions. According to 

our best knowledge, other authors 

(Nagayama et al. (2020)) addressed only 

optimum linear decomposition algorithms.  

 

In this paper, we also prove that properties of 

symmetric index generation functions can be 

used to simplify the computations, i.e., the 

number of variables N can be efficiently 

reduced. The approach proposed in this paper 

was presented in Fig. 1. Since � ≥ �′ ≥ �, 

typically less memory needs to be used to 

implement the input function.  

 

Fig. 1: Proposed approach 

The rest of this paper is organized as follows: 

the second section defines symmetric index 

generation functions and compound degree. 

The linear decomposition algorithm using 

discernibility sets is described in the next 

section. In Section 4, we analyze the 

properties of symmetric index generation 

functions and their influence on the number 

of variables, i.e., we analyze ��	 functions. We 

also extend our previous work by  

Mazurkiewicz (2020c) and present the 

properties of ��	 functions. The results 

obtained using experimental software are 

presented in Section 5. The efficiency of the 

heuristic linear decomposition algorithm 

using the variable reduction method 

described in this paper is investigated in that 

section. The last section concludes the paper. 
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Preliminaries 

 

An index generation function represents 

the following mapping: 

 �: �	 → {1,2, … , �} (1) 

where �	  is a set of different binary vectors, 

called registered vectors, i.e., �	 ⊆ {0,1}	 . 

The important property of this function is that |�	| = � ≪ 2	 . Function F assigns the 

corresponding index (unique integer value 

from 1 to K) for every vector � ∈ �	 . 

A characteristic function � of an index 

generation function is 

� ∶  {0,1}	 → {0,1}  (2) 

where 

� �! = "1 ⇔ � ∈ �	0 ⇔ $%ℎ'()*+' (3) 

In this paper, we focus on symmetric index 

generation functions, i.e., index generation 

functions whose characteristic function is 

symmetric. 

M-out-of-N coders are often used as standard 

benchmark functions of linear decomposition 

algorithms. Typically, , ∈ {1,2,3,4} and � ∈

{16,20}. Those coders consist of � = 0�,1 

binary vectors, whose length is N and 

Hamming weight is M. Such functions 

represent symmetric index generation 

functions (Sasao (2020)) and are denoted �2	. 

An example of such a function was presented 

in Table 1.  

Table	1:	Symmetric	function	345. 
 64 67 68 69 6: 65 ; <! 

1 0 0 0 0 0 1 

0 1 0 0 0 0 2 

0 0 1 0 0 0 3 

0 0 0 1 0 0 4 

0 0 0 0 1 0 5 

0 0 0 0 0 1 6 
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What is important, the classical variable 

reduction methods fail for �2	 functions and 

reduce only one variable. Therefore, linear 

decomposition algorithms are mostly used to 

minimize those functions. In that case, an 

input function F(X) is realized using a general 

function G(Y) and P linear functions. Consider 

a linear function = =⊕?@�	 A?B? , where A? ∈ C, B? ∈ {0,1}. The compound degree of such 

function equals δ = ∑ B?	?@�  (each B?  is viewed 

as an integer). Therefore, the compound 

degree of the function G(Y) is equal to max?@�,�,…,
 δ. 

Linear Decomposition 

To find a linear decomposition of an index 

generation function, a discernibility set might 

be used. In this section, we shortly present an 

iterative algorithm using such sets. For a 

detailed description please refer to the 

original paper by Mazurkiewicz and Łuba 

(2019). The efficiency of this algorithm for 

general index generation functions was 

already proven. 

A discernibility set, denoted as IJK is defined 

as follows: 

IJK = {A ∈ C, L ≠ N: A L! ≠ A N!} (4) 

p and q are indexes of registered vectors. Each 

vector � ∈ �	  has index p iff F(v) = p. 

The collection of all IJK sets, i.e., for L, N ∈{1,2, … , �} and L < N, will be denoted as PIJK 

and its complement as IQ,RPIJKS. 

Additionally, the complement limited to sets 

with cardinality r will be denoted as IQ,RPIJKT S, ( ≤ �. 

To find the decomposition of a function using 

several linear functions, the simple test can be 

used (Łuba et al. (2016), Mazurkiewicz and 

Łuba (2019)). Function A? ⊕ AV  (A? , AV ∈ C) is 

a decomposition function of F iff WA? , AVX ∉PIJK . In that case, WA? , AVX ∈ IQ,RPIJKS. This 

simple test can be generalized. For example, 

pair of two linear functions: A? ⊕ AV  and AV ⊕AZ  (AZ ∈ C) are decomposition functions of F 

iff WA? , AV , AZX ∈ IQ,RPIJKS. 

The discernibility matrix can be used to 

represent PIJK . To improve the time 

efficiency of the algorithm, the repeating 

values are removed from this matrix. To 

illustrate the idea of discernibility sets, all IJK 

sets generated for the ��[ function, i.e., PIJK , 

were presented in Table 2. Additionally, the 

discernibility matrix was presented in Table 

3. In each row, A? = 1 iff A? ∈ IJK. Notice that 

each row can be generated using EXOR 

operation on p-th and q-th vectors from the 

truth table. 

Table	2:	\]^_	for	symmetric	function	345.	
	L, N IJK L, N IJK L, N IJK 

1,2 {A�, A�} 2,3 {A�, A`} 3,5 {A`, Aa} 

1,3 {A�, A`} 2,4 {A�, Ab} 3,6 {A`, A[} 

1,4 {A�, Ab} 2,5 {A�, Aa} 4,5 {Ab, Aa} 
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1,5 {A�, Aa} 2,6 {A�, A[} 4,6 {Ab, A[} 

1,6 {A�, A[} 3,4 {A`, Ab} 5,6 {Aa, A[} 

 

 

Table 3: The discernibility matrix for symmetric function 345. 

 64 67 68 69 6: 65 ^, _ 

1 1 0 0 0 0 1,2 

1 0 1 0 0 0 1,3 

1 0 0 1 0 0 1,4 

1 0 0 0 1 0 1,5 

1 0 0 0 0 1 1,6 

0 1 1 0 0 0 2,3 

0 1 0 1 0 0 2,4 

0 1 0 0 1 0 2,5 

0 1 0 0 0 1 2,6 

0 0 1 1 0 0 3,4 

0 0 1 0 1 0 3,5 

0 0 1 0 0 1 3,6 

0 0 0 1 1 0 4,5 

0 0 0 1 0 1 4,6 

0 0 0 0 1 1 5,6 

To find linear functions that decompose an 

index generation function, an iterative 

approach was proposed (Mazurkiewicz and 

Łuba (2019)). The algorithm was presented as 

Algorithm 1. Some speed-up techniques were 

described in the original paper. 

In this paper, we assume that the input 

function is not preprocessed using the 

argument reduction procedure (step 1 in 

Algorithm 1). For symmetric functions �2	, 

this procedure reduces only one variable and 

leads to a single row of all zeroes, which 

heavily affects the properties of analyzed 

functions. Furthermore, in our experiments, 

this step is replaced with the procedure 

described in Section 4. 

The mentioned algorithm works as follows. 

Firstly, discernibility sets are calculated and 

used to form a discernibility matrix (step 2). 

The repeating values are removed from the 

matrix (step 3). Next, the algorithm searches 

for a decomposition function of F. As long as IQ,RPIJKS ≠ ∅, further decomposition can 

be found. Thus, the algorithm iteratively finds 

a decomposition function and regenerates the 

discernibility matrix. The discernibility 

matrix is regenerated based on a linear 

transformation g that was found in each 

iteration (steps 5 and 6). Duplicates are 

removed again to increase the efficiency of the 

procedure of searching for a decomposition 

function. 
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Algorithm	1.	Linear decomposition algorithm by 

Mazurkiewicz and Łuba (2019) 

 Input:	function F 

 Output:	minimized function 

1: � ← �e(*efg'_('ijB%*$k �! 

2: �, ← l'k'(e%'_i*+'(k*f*g*%=_me%(*A �! 

3: �, ← ('m$�'_ijLg*Be%'+ �,! 

4: nopqr IQ,RPIJKS ps tuv ∅ wu 

5: l ← x*ki_i'B$mL$+*%*$k_xjkB%*$k �,! 

6: �, ← m$i*x=_i*+B'(k*f*g*%=_me%(*A �,, l! 

7: � ← m$i*x=_xjkB%*$k �, l! 

8: rtw nopqr 

9: yrvzyt � 

The key element of the algorithm is the proper 

selection of a decomposition function (step 5). 

The most time-efficient approach, called First-

Fit or simply FF, chooses the first (in the 

lexicographic order) decomposition that was 

found. Unfortunately, the solution provided 

by this method is not always optimal, i.e., for 

M-out-of-N coders.  

Another approach called MinR was proposed 

to address this issue. It uses the number R of 

distinct row vectors in a truth table of a 

function limited to a subset of input variables C\i, where d denotes variables used in a 

linear function and |i| = (. For example, if = = A� ⊕ A�, then i = {A�, A�} and C\i ={A`, Ab, … , A	}. The function that provides the 

minimum value of R is chosen as a 

decomposition function. If two or more 

subsets have the same value of R, then the first 

function found is chosen. In that case, we 

proceed similarly to the FF method.  

Due to the additional calculations in a 

decomposition selection procedure, the MinR 

approach is more time-consuming than the FF 

approach. However, the results presented in 

the literature (Mazurkiewicz and Łuba 

(2019)) prove that it provides better results 

for M-out-of-N coders. On average, both 

approaches lead to similar results in terms of 

the solution quality. Therefore, the FF 

approach is much more useful for typical 

index generation functions due to the time-

efficiency. 

What is important, in both approaches the 

algorithm searches in each iteration for a 

decomposition function with a compound 

degree as small as possible. Thus, firstly IQ,RPIJK� S is analyzed, then IQ,RPIJK̀S, 

and so on as long as ( ≤ � and IQ,RRC~�S ≠∅. 

Properties of Symmetric Functions 

In this section, we analyze the properties of 

symmetric functions. We determine how they 

can be used for reducing the number of 

variables. In particular, they are used to 

modify the truth table of a function in the first 

step of Algorithm 1. In the first and second 

subsections, we focus on symmetric index 

generation functions with , = 1, i.e., ��	. The 

last subsection extends previous work by 

Mazurkiewicz (2020c) and deals with ��	 functions. 

As mentioned earlier, the classical variable 

reduction methods fail for �2	 functions. Thus, 

the approach described in this section is really 

useful to speed-up other minimization 

techniques by reducing the number of input 

variables. The correctness of the theoretical 

consideration presented in this section was 

practically confirmed using experimental 
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software (written in Python) and the 

functions that are presented in the next 

section.  

Basic Minimization 

Let , = 1 and � ≥ 3. In that case, � = �. In a 

symmetric index generation function ��	 

variable A? = 1 (A? ∈ C) in each registered 

vector � ∈ �	  iff * = � �!. Recall that Table 1 

illustrates this property. In that case, any IJK 

set contains only two variables: AJ and AK  

since registered vectors with indexes p and q 

will always differ on those two variables. 

Therefore, the generation of PIJK leads to a 

discernibility matrix that contains all possible 

vectors, whose length is N, and Hamming 

weight is two. Any variable A? = 1 iff * = L ∨ * = N. Thus, IQ,RPIJK� S = ∅ and no function 

with compound degree two can be used as 

a decomposition function.  

On the other hand, PIJK does not contain any 

set with a cardinality bigger than two. 

Therefore, since {A�, A�, A`} ∈ IQ,RPIJKS the 

algorithm chooses a pair of functions: =� =A� ⊕ A� and =� = A� ⊕ A` as decomposition 

functions in the FF approach. Recall that the 

MinR approach requires additional 

computations to select a function. However, 

the discernibility matrix of the analyzed 

symmetric index generation function can be 

also treated as a symmetric function. Thus, the 

value of R will be the same for all possible 

subsets d. This leads to the conclusion that the 

same pair of functions is chosen also in the 

MinR approach. 

Notice that a pair of functions will be used as 

decomposition functions for any symmetric 

index generation function ��	. What is 

important is that the pair is known in advance 

without any computations whatsoever. The 

number of variables is reduced from N to �′ =� − 1. 

Consider now the function after first iteration 

of the algorithm if � ≥ 6, i.e., � C! =� Ab, Aa, … , A	 , =� , =�!. Notice that first and 

third vectors are vectors whose Hamming 

weight equals one. On the other hand, the 

second vector has 1 on both =� and =� 

variables. Thus, the truth table of a function 

still contains all possible vectors with 

Hamming weight one. The length of those 

vectors equals �′ = � − 1. Therefore, IQ,RPIJK� S = ∅ one more time. Decomposed 

function ��[ and all calculated IJK sets with 

cardinality two were presented in Tables 4 

and 5 accordingly to illustrate described 

theoretical considerations.  

Table	4:	Decomposition	of	symmetric	function	345. 

 

(a) Function after first iteration. (b) Function after second iteration. Ab Aa A[ =� =� � C′! 

0 0 0 1 0 1 

0 0 0 1 1 2 

0 0 0 0 1 3 

1 0 0 0 0 4 

0 1 0 0 0 5 

0 0 1 0 0 6 

 =� =� =` =b � C′′! 

1 0 0 0 1 

1 1 0 0 2 

0 1 0 0 3 

0 0 1 0 4 

0 0 1 1 5 

0 0 0 1 6 



Journal of Software & Systems Development                                                                                                      8 

____________________________________________________________________________ 

_________________ 

 

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,  

DOI: 10.5171/2021.590033 

 

 

Table 5: ]^_7 	sets	in	the	second	iteration.	

	^, _	 ]^_7 		 ^, _	 ]^_7 		

1,3	 {=�, =�} 3,5 {=� , Aa} 

1,4 {=�, Ab} 3,6 {=� , A[} 

1,5 {=�, Aa} 4,5 {Ab, Aa} 

1,6 {=�, A[} 4,6 {Ab, A[} 

3,4 {=�, Ab} 5,6 {Aa, A[} 

Using the FF approach, we proceed similarly 

as previously. This leads to choosing a pair of 

functions =` = Ab ⊕ Aa and =b = Aa ⊕ A[ as 

decomposition functions. Notice that for the 

FF approach the described procedure will be 

used iteratively � = �	̀� times. Thus, the 

number of variables can be reduced to �′ =� − � without any computations. In the next 

subsection, we investigate if some additional 

improvement can be achieved. 

On the other hand, for the MinR approach, we 

have to proceed differently after finding the 

first pair of decomposition functions. Notice 

that if subset d contains only variables A? , then 

all rows in a truth table are distinct. Thus, P =�. Recall that in the MinR approach, we look 

for a subset d that minimizes the value of R. If 

=� ∈ i, then the second and third rows are the 

same, i.e., all variables A?  are zeroes and =� =1. Other rows are distinct. Thus, P = � − 1 

and pair of functions: Ab ⊕ Aa and Aa ⊕ =� is 

chosen as decomposition functions. In the 

end, the number of variables is reduced by 

two without any computations. 

Further Minimization 

From this point, we analyze only the FF 

approach. Let � = 3 ∙ k, k ∈ ℕ and � C! =� =�, =� , … , =
!. If k = 2, then IQ,RPIJKS ≠∅ and no further minimization is possible. If k > 2, then the vectors from the truth table of 

a function can be represented as a 

composition of the following two matrices: 

� =  �1 01 10 1�
`×�

 � =  �0 00 00 0�
`×�

 (5) 

In the result, we get the following matrix: 

, = �� �� � ⋯ �⋯ �⋮ ⋮� � ⋱ ⋮⋯ ��
�× �∙�!

 (6) 

Notice that matrix B contains only zeroes. 

Matrix A contains two rows with Hamming 

weight equal to one and one with Hamming 

weight equal to two. What is more, this matrix 

contains all possible vectors, whose length is 

two, and Hamming weight is one. In the 
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matrix M, every row and every column 

contain only one matrix A. Thus, the matrix M 

contains all possible vectors, whose length is 2 ∙ k, and Hamming weight is one. In that case, IQ,RPIJK� S = ∅ and no function with 

compound degree equal to two can be used as 

a decomposition function.  

Since matrix A contains a row of all ones, it is 

not possible to find a pair of decomposition 

functions =? ⊕ =V  and =V ⊕ =Z  such that � −* = 1 ∨ � − � = 1. Thus, the first (in the 

lexicographic order) pair of decomposition 

functions that satisfies this limitation is 

chosen, i.e., =� ⊕ =`  and =` ⊕ =a . In that case, 

the number of variables was reduced to �� =�̀ � − 1 without any computations. 

On the other hand, if � ≠ 3 ∙ k (� ≥ 7), then 

we have � C! = � A	 , =� , =�, … , =
��! or � C! = � A	��, A	 , =�, =�, … , =
��!. In that 

case, instead of the matrix M, we get one of the 

following matrices accordingly: 

,� =  �0 ,1 0 � ���!× �∙���!  (7) 

,� =  �0 0 ,1 0 00 1 0 �
 ���!× �∙���!

  (8) 

Recall that the matrix M contains all possible 

rows with Hamming weight equal to one, 

whose length is 2 ∙ k. Thus, both ,� and ,� 

matrices contain all possible 2 ∙ k + 1 and 2 ∙k+2-bit length vectors accordingly. Therefore, 

again IQ,RPIJK� S = ∅.  

Notice that the ,� matrix contains a row such 

that only =� and =� are one. Thus, {A	 , =�, =�} ∈PIJK and a pair of functions A	 ⊕ =�  and =� ⊕=� cannot be used as decomposition functions. 

On the other hand, {A	 , =�, =`} ∈ IQ,RPIJKS 

and one more variable is reduced without 

computations. Similarly, the ,� matrix 

contains a row such that only =� is one. Thus, {A	��, A	 , =�} ∈ PIJK and {A	��, A	 , =�} ∈IQ,RPIJKS. 

As a result, for both matrices, we obtain a 

reduction of variables by �	̀� − 1 without any 

computations whatsoever. 

Several remarks on 37� functions 

Let , = 2. In that case, a truth table of 

symmetric index generation function contains 

all � = 0�21 binary vectors, whose length is N 

and Hamming weight is two. In this 

subsection, we consider S�b function and 

present the analysis of the properties of the S�� 

functions.  

The truth table of the S�b function is presented 

in Table 6. Notice that A� equals one for the 

first three vectors. In that case, the rest of the 

variables, i.e., A�, A` and Ab, represent all 

possible vectors, whose length is � − 1 and 

Hamming weight is one. Thus, a discernibility 

matrix contains all possible vectors with A� =0, whose Hamming weight is two, i.e., rows 

that represent I��, I�` and I�` sets. 
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Table	6:	Symmetric	function	379. 

 A� A� A` Ab � C! 

1 1 0 0 1 

1 0 1 0 2 

1 0 0 1 3 

0 1 1 0 4 

0 1 0 1 5 

0 0 1 1 6 

It should be also noted that for other vectors A� equals zero and their Hamming weight is 

two. Thus, for L = {1,2,3} and N = {4,5,6}, sets IJK contain all possible vectors with A� = 1 

and Hamming weight two. In that case, the 

generation of PIJK leads to a discernibility 

matrix that contains all possible vectors, 

whose length is N and Hamming weight is two. 

It also contains rows of all ones, e.g., I�[ =

{A�, A�, A`, Ab}. The obtained discernibility 

matrix (before removing duplicates) was 

presented in Table 7. Based on that, the 

algorithm chooses a pair of functions to 

decompose the input function, i.e., =� = A� ⊕A� and =� = A� ⊕ A` 0{A�, A�, A`} ∈IQ,RPIJKS1. 

 

Table 7: The discernibility matrix for symmetric function 379. 

 A� A� A` Ab L, N 

0 1 1 0 1,2 

0 1 0 1 1,3 

1 0 1 0 1,4 

1 0 0 1 1,5 

1 1 1 1 1,6 

0 0 1 1 2,3 

1 1 0 0 2,4 

1 1 1 1 2,5 

1 0 0 1 2,6 

1 1 1 1 3,4 

1 1 0 0 3,5 

1 0 1 0 3,6 

0 0 1 1 4,5 

0 1 0 1 4,6 

0 1 1 0 5,6 
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For bigger values of N (� ≥ 6), it should be 

noted that set of vectors for a subset of input 

variables, i.e., {Ab, Aa, … , A	}, contains all 

possible vectors with Hamming weight equal 

to one and two, and vectors of all zeroes. Using 

considerations described earlier in this 

section, we know that {Ab, Aa, A[} ∈IQ,RPIJKS. Thus, =` = Ab ⊕ Aa and =b =Aa ⊕ A[. This leads to a conclusion that the 

approach for S�� functions is quite similar to 

that described in Section 4a of this paper. We 

can repeat this procedure � times in total. 

Therefore, the number of variables is reduced 

to �� = � − � without any computations.  

Evaluation 

To evaluate the efficiency of the described 

approach, we analyze some basic symmetric 

index generation functions. The same 

functions were used by other authors 

(Nagayama et al. (2020)) to analyze the 

optimum algorithm. Table 8 shows obtained 

results, i.e., the reduction of the number of 

variables (from N to N'), using the described 

properties of symmetric functions and the FF 

approach. In table 8a, S. 4a denotes results 

obtained using the approach described in 

Section 4a of this paper. Column S. 4b shows 

the results after applying further 

minimization. Notice that the number of 

variables was significantly reduced without 

any computations. The values of N, K and the 

number of variables obtained using the 

approach from Section 4c for S�� functions 

were presented in Table 8b. The linear 

decomposition algorithms can be applied to 

further reduce the number of variables. Since 

the time efficiency of all heuristic linear 

decomposition algorithms depends on the 

number of input variables, reducing it leads to 

better efficiency. 

 

Table 8: Obtained results using the properties of symmetric functions and the FF approach 

 

a) 34�	functions	

Function	 �	 S.	4a	 S.	4b	���¡ 10 7 6 ���¡ 20 14 13 ��̀ ¡ 30 20 19 ��b¡ 40 27 26 ��a¡ 50 34 33 ��[¡ 60 40 39 ��¢¡ 70 47 46 ��£¡ 80 54 53 

 

b) 37�	functions	

Function	 �	 K S. 4c ���¡ 10 45 7 ���a 15 105 10 ���¡ 20 190 14 ���a 25 300 17 ��̀ ¡ 30 435 20 ��̀ a 35 595 24 

Table 9 shows the obtained results after minimizing symmetric functions using original heuristic 

algorithms by Mazurkiewicz and Łuba (2019). The column denoted Opt shows results obtained using 

the optimum method by Nagayama et al. (2020). However, this method searches only for solutions 

with a compound degree less or equal to five. Thus, it is possible to find a decomposition with fewer 

input variables than Opt. The column denoted ¤ presents the optimum theoretical solution calculated 

using the following formula: 

¤ =  ⌈log� �⌉ (9) 
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Table 9: Results obtained using heuristic algorithms 

 

Function Opt ª FF MinR ���¡ 4 4 4 4 ���¡ 7 5 6 5 ��̀ ¡ 10 5 6 5 ��b¡ 13 6 7 6 ��a¡ 17 6 7 6 ��[¡ 20 6 7 6 ��¢¡ 23 7 8 7 ��£¡ 27 7 8 7 

Table 10 shows the compound degree for 

results obtained using FF and MinR methods. 

The most remarkable result to emerge from 

the data is that the application of heuristic 

methods leads to better results in terms of the 

number of input variables. Results obtained 

using the FF approach are close to ¤, while the 

MinR method leads to results equal ¤ for all 

analyzed functions. However, the obtained 

compound degrees are generally high. It is 

worth mentioning that both methods, FF and 

MinR, were not designed to minimize the 

compound degree of a decomposed function. 

Using the approach described in this paper, 

we obtain worse result by one variable for the ��[¡ function using the FF method. The main 

reason for this is that the argument reduction 

procedure is not applied. Thus, an input 

function is slightly different. For other 

analyzed symmetric functions, we get the 

same number of the variables P after linear 

decomposition. 

Table	10:	Compound	degree.	

	

Method	 344«	 347« 348« 349« 34:« 345« 34¬« 34« 

FF 4 9 15 22 29 29 38 36 

MinR 5 10 16 20 32 32 26 40 

Figure 2 shows computation time (in seconds) 

of heuristic decomposition of symmetric 

index generation functions ��	. The 

experiments were conducted using 

experimental software implemented in 

Python (using NumPy), and run on the 

following computer environment: CPU: Intel 

Xeon E5-2650v2 2.6Hz, memory: 64 GB, OS: 

Windows 7, interpreter: Python 3.8. 

Computation time using original algorithms 

was presented. Additionally, the computation 

time after reducing the number of variables 

using the approach proposed in this paper 

was presented to evaluate its efficiency. It was 

denoted FFp and MinRp accordingly. 
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The FF method is much faster than the 

optimum method by Nagayama et al. (2020) 

implemented in the C language and leads to 

quite good results. For example, it finds the 

solution for the ��£¡ function that is worse than 

the theoretical optimum by only one variable 

in 1.2 seconds. On the other hand, the time 

efficiency of the MinR method is much worse. 

Notice that the reduction of the number of 

variables leads to better time efficiency of 

both algorithms. Time FFp is up to 2.3 times 

shorter than the computation time of the 

original method. On the other hand, the MinR 

method has been accelerated only by 5%. 

Notice that the presented results prove that 

the MinR method is more time-consuming. 

 

 (a) The FF method.  (b) The MinR method. 

 

Fig. 2: Computation time (in seconds) for 34� functions 

Figure 3 shows the computation time (in 

seconds) of minimization of several ��	 

functions. The obtained results are similar to 

those for ��	 functions. A significant reduction 

in computation time was achieved using the 

approach described in this paper. Notice that 

computation times are longer compared to 

those presented in Figure 2a. This is because 

the number of vectors K is much larger for ��	 

functions. For example, the truth table of the ��̀ a function has � = 35 vectors. On the other 

hand, if , = 2, then � = 595 (see Table 8b). 

  

Fig. 3: Computation time (in seconds) for 37� functions 
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Conclusion 

In this paper, the properties of symmetric 

index generation functions were analyzed. 

Additionally, we proved that those properties 

can be used to efficiently reduce the number 

of variables. This leads to a lower 

computation time of the heuristic linear 

decomposition algorithms. In particular, the 

FF method was accelerated by up to 2.3 times 

for analyzed ��	 functions. Significant time 

improvement was also achieved for ��	 

functions. What is more, we proved that 

heuristic algorithms can provide better 

results (in a shorter time) than the optimum 

algorithm in terms of the number of variables 

P. However, the compound degrees are much 

higher. 

In this paper, we focused on symmetric 

functions with , ≤ 2. Therefore, our future 

work includes analysis of properties of 

functions with , ≥  3 and their influence on 

heuristic linear decomposition algorithms. 
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