
IBIMA Publishing

Journal of Software & Systems Development

https://ibimapublishing.com/articles/JSSD/2021/590033/

Vol. 2021 (2021), Article ID 590033, 14 pages, ISSEN: 2166-0824

DOI: 10.5171/2021.590033

Cite this Article as: Tomasz MAZURKIEWICZ (2021)," Heuristic Minimization of Symmetric Index Generation

Functions utilizing their Properties", Journal of Software & Systems Development, Vol. 2021 (2021), Article ID

590033, DOI: 10.5171/2021.590033

Research Article

Heuristic Minimization of Symmetric Index

Generation Functions utilizing their

Properties

Tomasz MAZURKIEWICZ

Faculty of Cybernetics, Military University of Technology, Warsaw, Poland,

tomasz.mazurkiewicz@wat.edu.pl, ORCID: 0000-0001-7305-2379

Received date: 9 November 2020; Accepted date: 15 January 2021; published date: 22 February 2021

Academic Editor: Iulian Furdu

Copyright © 2021. Tomasz MAZURKIEWICZ. Distributed under Creative Commons Attribution 4.0

International CC-BY 4.0

Introduction

Memory-based logic synthesis of index

generation functions (IGF) gained a lot of

interest due to the applications of those

functions (Sasao (2011, 2017, 2020)) in

realizing pattern matching circuits. In the

literature, there are many examples of using

those functions in telecommunication,

cybersecurity, and the Internet of Things for

devices such as virtual routers and malicious

data detection systems. What is more, the

concept of a hardware implementation of

index generation functions has been reported

by Sasao (2020) as the key device in the

network hardware.

Index generation function maps unique

integer value {1,2, … , �} to elements of a set

Abstract

This paper focuses on the minimization of index generation functions, which are useful in

telecommunication and cybersecurity. In particular, we target a specific class of those functions,

i.e., symmetric index generation functions. The application of logic synthesis methods to such

functions can often lead to a representation that uses fewer variables. We analyze the properties

of those functions and how they can be used to minimize the number of variables. What is more,

we investigate the influence on accelerating other minimization techniques, such as linear

decomposition. Presented results show that by taking advantage of the described properties, the

computations using the heuristic algorithm are significantly faster.

Keywords: Index generation functions, Logic synthesis, Linear decomposition, Symmetric

functions, Variable reduction

Journal of Software & Systems Development 2

__

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

that consists of K different binary vectors,

whose length equals N. Other assignments are

left unspecified and function returns zero. The

important property of those functions is that

they are not fully defined, i.e., � ≪ 2	 . Thus,

they can be efficiently minimized and

implemented using fewer variables than N.

In the literature, techniques such as variable

reduction (Borowik and Łuba (2014), Sasao

(2020)) and functional decomposition

(Mazurkiewicz (2020a, 2020b), Nagayama et

al. (2020)) are used very often to minimize

memory usage. However, linear

decomposition (using XOR gates) has been

identified as being very efficient (Łuba et al.

(2016), Mazurkiewicz and Łuba (2019), Sasao

(2017, 2020)), i.e., for M-out-of-N coders.

Interestingly, logic synthesis methods can be

easily transferred and adapted to the field of

knowledge discovery and data mining

(Borowik (2014), Borowik and Łuba (2014)),

i.e., to minimize the number of attributes and

remove redundant decision rules.

Using the linear decomposition, an index

generation function is implemented as a

composition of a linear transformation L

(using EXOR gates) and a general function G

that is implemented using memory

(RAM/ROM). Linear transformation, i.e., a

composition of several linear functions,

reduces the number of variables from N to P.

Thus, 2
�-bit memory is required to

implement function G.

In this paper, we analyze how the properties

of symmetric index generation functions, i.e.,

their structure, influence the process of their

minimization. In particular, we focus on the

application of the existing heuristic linear

decomposition algorithm by Mazurkiewicz

and Łuba (2019). Symmetric index generation

functions are a special class of index

generation functions. We prove that existing

heuristic methods can be easily applied to

minimize this class of functions. According to

our best knowledge, other authors

(Nagayama et al. (2020)) addressed only

optimum linear decomposition algorithms.

In this paper, we also prove that properties of

symmetric index generation functions can be

used to simplify the computations, i.e., the

number of variables N can be efficiently

reduced. The approach proposed in this paper

was presented in Fig. 1. Since � ≥ �′ ≥ �,

typically less memory needs to be used to

implement the input function.

Fig. 1: Proposed approach

The rest of this paper is organized as follows:

the second section defines symmetric index

generation functions and compound degree.

The linear decomposition algorithm using

discernibility sets is described in the next

section. In Section 4, we analyze the

properties of symmetric index generation

functions and their influence on the number

of variables, i.e., we analyze ��	 functions. We

also extend our previous work by

Mazurkiewicz (2020c) and present the

properties of ��	 functions. The results

obtained using experimental software are

presented in Section 5. The efficiency of the

heuristic linear decomposition algorithm

using the variable reduction method

described in this paper is investigated in that

section. The last section concludes the paper.

3 Journal of Software & Systems Development

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

Preliminaries

An index generation function represents

the following mapping:

 �: �	 → {1,2, … , �} (1)

where �	 is a set of different binary vectors,

called registered vectors, i.e., �	 ⊆ {0,1}	 .

The important property of this function is that |�	| = � ≪ 2	 . Function F assigns the

corresponding index (unique integer value

from 1 to K) for every vector � ∈ �	 .

A characteristic function � of an index

generation function is

� ∶ {0,1}	 → {0,1} (2)

where

� �! = "1 ⇔ � ∈ �	0 ⇔ $%ℎ'()*+' (3)

In this paper, we focus on symmetric index

generation functions, i.e., index generation

functions whose characteristic function is

symmetric.

M-out-of-N coders are often used as standard

benchmark functions of linear decomposition

algorithms. Typically, , ∈ {1,2,3,4} and � ∈

{16,20}. Those coders consist of � = 0�,1

binary vectors, whose length is N and

Hamming weight is M. Such functions

represent symmetric index generation

functions (Sasao (2020)) and are denoted �2	.

An example of such a function was presented

in Table 1.

Table	1:	Symmetric	function	345.
 64 67 68 69 6: 65 ; <!

1 0 0 0 0 0 1

0 1 0 0 0 0 2

0 0 1 0 0 0 3

0 0 0 1 0 0 4

0 0 0 0 1 0 5

0 0 0 0 0 1 6

Journal of Software & Systems Development 4

__

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

What is important, the classical variable

reduction methods fail for �2	 functions and

reduce only one variable. Therefore, linear

decomposition algorithms are mostly used to

minimize those functions. In that case, an

input function F(X) is realized using a general

function G(Y) and P linear functions. Consider

a linear function = =⊕?@�	 A?B? , where A? ∈ C, B? ∈ {0,1}. The compound degree of such

function equals δ = ∑ B?	?@� (each B? is viewed

as an integer). Therefore, the compound

degree of the function G(Y) is equal to max?@�,�,…,
 δ.

Linear Decomposition

To find a linear decomposition of an index

generation function, a discernibility set might

be used. In this section, we shortly present an

iterative algorithm using such sets. For a

detailed description please refer to the

original paper by Mazurkiewicz and Łuba

(2019). The efficiency of this algorithm for

general index generation functions was

already proven.

A discernibility set, denoted as IJK is defined

as follows:

IJK = {A ∈ C, L ≠ N: A L! ≠ A N!} (4)

p and q are indexes of registered vectors. Each

vector � ∈ �	 has index p iff F(v) = p.

The collection of all IJK sets, i.e., for L, N ∈{1,2, … , �} and L < N, will be denoted as PIJK

and its complement as IQ,RPIJKS.

Additionally, the complement limited to sets

with cardinality r will be denoted as IQ,RPIJKT S, (≤ �.

To find the decomposition of a function using

several linear functions, the simple test can be

used (Łuba et al. (2016), Mazurkiewicz and

Łuba (2019)). Function A? ⊕ AV (A? , AV ∈ C) is

a decomposition function of F iff WA? , AVX ∉PIJK . In that case, WA? , AVX ∈ IQ,RPIJKS. This

simple test can be generalized. For example,

pair of two linear functions: A? ⊕ AV and AV ⊕AZ (AZ ∈ C) are decomposition functions of F

iff WA? , AV , AZX ∈ IQ,RPIJKS.

The discernibility matrix can be used to

represent PIJK . To improve the time

efficiency of the algorithm, the repeating

values are removed from this matrix. To

illustrate the idea of discernibility sets, all IJK

sets generated for the ��[function, i.e., PIJK ,

were presented in Table 2. Additionally, the

discernibility matrix was presented in Table

3. In each row, A? = 1 iff A? ∈ IJK. Notice that

each row can be generated using EXOR

operation on p-th and q-th vectors from the

truth table.

Table	2:	\]^_	for	symmetric	function	345.	
	L, N IJK L, N IJK L, N IJK

1,2 {A�, A�} 2,3 {A�, A`} 3,5 {A`, Aa}

1,3 {A�, A`} 2,4 {A�, Ab} 3,6 {A`, A[}

1,4 {A�, Ab} 2,5 {A�, Aa} 4,5 {Ab, Aa}

5 Journal of Software & Systems Development

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

1,5 {A�, Aa} 2,6 {A�, A[} 4,6 {Ab, A[}

1,6 {A�, A[} 3,4 {A`, Ab} 5,6 {Aa, A[}

Table 3: The discernibility matrix for symmetric function 345.

 64 67 68 69 6: 65 ^, _

1 1 0 0 0 0 1,2

1 0 1 0 0 0 1,3

1 0 0 1 0 0 1,4

1 0 0 0 1 0 1,5

1 0 0 0 0 1 1,6

0 1 1 0 0 0 2,3

0 1 0 1 0 0 2,4

0 1 0 0 1 0 2,5

0 1 0 0 0 1 2,6

0 0 1 1 0 0 3,4

0 0 1 0 1 0 3,5

0 0 1 0 0 1 3,6

0 0 0 1 1 0 4,5

0 0 0 1 0 1 4,6

0 0 0 0 1 1 5,6

To find linear functions that decompose an

index generation function, an iterative

approach was proposed (Mazurkiewicz and

Łuba (2019)). The algorithm was presented as

Algorithm 1. Some speed-up techniques were

described in the original paper.

In this paper, we assume that the input

function is not preprocessed using the

argument reduction procedure (step 1 in

Algorithm 1). For symmetric functions �2	,

this procedure reduces only one variable and

leads to a single row of all zeroes, which

heavily affects the properties of analyzed

functions. Furthermore, in our experiments,

this step is replaced with the procedure

described in Section 4.

The mentioned algorithm works as follows.

Firstly, discernibility sets are calculated and

used to form a discernibility matrix (step 2).

The repeating values are removed from the

matrix (step 3). Next, the algorithm searches

for a decomposition function of F. As long as IQ,RPIJKS ≠ ∅, further decomposition can

be found. Thus, the algorithm iteratively finds

a decomposition function and regenerates the

discernibility matrix. The discernibility

matrix is regenerated based on a linear

transformation g that was found in each

iteration (steps 5 and 6). Duplicates are

removed again to increase the efficiency of the

procedure of searching for a decomposition

function.

Journal of Software & Systems Development 6

__

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

Algorithm	1.	Linear decomposition algorithm by

Mazurkiewicz and Łuba (2019)

 Input:	function F

 Output:	minimized function

1: � ← �e(*efg'_('ijB%*$k �!

2: �, ← l'k'(e%'_i*+'(k*f*g*%=_me%(*A �!

3: �, ← ('m$�'_ijLg*Be%'+ �,!

4: nopqr IQ,RPIJKS ps tuv ∅ wu

5: l ← x*ki_i'BmL+*%*$k_xjkB%*$k �,!

6: �, ← m$i*x=_i*+B'(k*f*g*%=_me%(*A �,, l!

7: � ← m$i*x=_xjkB%*$k �, l!

8: rtw nopqr

9: yrvzyt �

The key element of the algorithm is the proper

selection of a decomposition function (step 5).

The most time-efficient approach, called First-

Fit or simply FF, chooses the first (in the

lexicographic order) decomposition that was

found. Unfortunately, the solution provided

by this method is not always optimal, i.e., for

M-out-of-N coders.

Another approach called MinR was proposed

to address this issue. It uses the number R of

distinct row vectors in a truth table of a

function limited to a subset of input variables C\i, where d denotes variables used in a

linear function and |i| = (. For example, if = = A� ⊕ A�, then i = {A�, A�} and C\i ={A`, Ab, … , A	}. The function that provides the

minimum value of R is chosen as a

decomposition function. If two or more

subsets have the same value of R, then the first

function found is chosen. In that case, we

proceed similarly to the FF method.

Due to the additional calculations in a

decomposition selection procedure, the MinR

approach is more time-consuming than the FF

approach. However, the results presented in

the literature (Mazurkiewicz and Łuba

(2019)) prove that it provides better results

for M-out-of-N coders. On average, both

approaches lead to similar results in terms of

the solution quality. Therefore, the FF

approach is much more useful for typical

index generation functions due to the time-

efficiency.

What is important, in both approaches the

algorithm searches in each iteration for a

decomposition function with a compound

degree as small as possible. Thus, firstly IQ,RPIJK� S is analyzed, then IQ,RPIJK̀S,

and so on as long as (≤ � and IQ,RRC~�S ≠∅.

Properties of Symmetric Functions

In this section, we analyze the properties of

symmetric functions. We determine how they

can be used for reducing the number of

variables. In particular, they are used to

modify the truth table of a function in the first

step of Algorithm 1. In the first and second

subsections, we focus on symmetric index

generation functions with , = 1, i.e., ��	. The

last subsection extends previous work by

Mazurkiewicz (2020c) and deals with ��	 functions.

As mentioned earlier, the classical variable

reduction methods fail for �2	 functions. Thus,

the approach described in this section is really

useful to speed-up other minimization

techniques by reducing the number of input

variables. The correctness of the theoretical

consideration presented in this section was

practically confirmed using experimental

7 Journal of Software & Systems Development

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

software (written in Python) and the

functions that are presented in the next

section.

Basic Minimization

Let , = 1 and � ≥ 3. In that case, � = �. In a

symmetric index generation function ��	

variable A? = 1 (A? ∈ C) in each registered

vector � ∈ �	 iff * = � �!. Recall that Table 1

illustrates this property. In that case, any IJK

set contains only two variables: AJ and AK

since registered vectors with indexes p and q

will always differ on those two variables.

Therefore, the generation of PIJK leads to a

discernibility matrix that contains all possible

vectors, whose length is N, and Hamming

weight is two. Any variable A? = 1 iff * = L ∨ * = N. Thus, IQ,RPIJK� S = ∅ and no function

with compound degree two can be used as

a decomposition function.

On the other hand, PIJK does not contain any

set with a cardinality bigger than two.

Therefore, since {A�, A�, A`} ∈ IQ,RPIJKS the

algorithm chooses a pair of functions: =� =A� ⊕ A� and =� = A� ⊕ A` as decomposition

functions in the FF approach. Recall that the

MinR approach requires additional

computations to select a function. However,

the discernibility matrix of the analyzed

symmetric index generation function can be

also treated as a symmetric function. Thus, the

value of R will be the same for all possible

subsets d. This leads to the conclusion that the

same pair of functions is chosen also in the

MinR approach.

Notice that a pair of functions will be used as

decomposition functions for any symmetric

index generation function ��	. What is

important is that the pair is known in advance

without any computations whatsoever. The

number of variables is reduced from N to �′ =� − 1.

Consider now the function after first iteration

of the algorithm if � ≥ 6, i.e., � C! =� Ab, Aa, … , A	 , =� , =�!. Notice that first and

third vectors are vectors whose Hamming

weight equals one. On the other hand, the

second vector has 1 on both =� and =�

variables. Thus, the truth table of a function

still contains all possible vectors with

Hamming weight one. The length of those

vectors equals �′ = � − 1. Therefore, IQ,RPIJK� S = ∅ one more time. Decomposed

function ��[and all calculated IJK sets with

cardinality two were presented in Tables 4

and 5 accordingly to illustrate described

theoretical considerations.

Table	4:	Decomposition	of	symmetric	function	345.

(a) Function after first iteration. (b) Function after second iteration. Ab Aa A[=� =� � C′!

0 0 0 1 0 1

0 0 0 1 1 2

0 0 0 0 1 3

1 0 0 0 0 4

0 1 0 0 0 5

0 0 1 0 0 6

 =� =� =` =b � C′′!

1 0 0 0 1

1 1 0 0 2

0 1 0 0 3

0 0 1 0 4

0 0 1 1 5

0 0 0 1 6

Journal of Software & Systems Development 8

__

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

Table 5:]^_7 	sets	in	the	second	iteration.	

	^, _]^_7 		 ^, _]^_7 		

1,3	 {=�, =�} 3,5 {=� , Aa}

1,4 {=�, Ab} 3,6 {=� , A[}

1,5 {=�, Aa} 4,5 {Ab, Aa}

1,6 {=�, A[} 4,6 {Ab, A[}

3,4 {=�, Ab} 5,6 {Aa, A[}

Using the FF approach, we proceed similarly

as previously. This leads to choosing a pair of

functions =` = Ab ⊕ Aa and =b = Aa ⊕ A[as

decomposition functions. Notice that for the

FF approach the described procedure will be

used iteratively � = �	̀� times. Thus, the

number of variables can be reduced to �′ =� − � without any computations. In the next

subsection, we investigate if some additional

improvement can be achieved.

On the other hand, for the MinR approach, we

have to proceed differently after finding the

first pair of decomposition functions. Notice

that if subset d contains only variables A? , then

all rows in a truth table are distinct. Thus, P =�. Recall that in the MinR approach, we look

for a subset d that minimizes the value of R. If

=� ∈ i, then the second and third rows are the

same, i.e., all variables A? are zeroes and =� =1. Other rows are distinct. Thus, P = � − 1

and pair of functions: Ab ⊕ Aa and Aa ⊕ =� is

chosen as decomposition functions. In the

end, the number of variables is reduced by

two without any computations.

Further Minimization

From this point, we analyze only the FF

approach. Let � = 3 ∙ k, k ∈ ℕ and � C! =� =�, =� , … , =
!. If k = 2, then IQ,RPIJKS ≠∅ and no further minimization is possible. If k > 2, then the vectors from the truth table of

a function can be represented as a

composition of the following two matrices:

� = �1 01 10 1�
`×�

 � = �0 00 00 0�
`×�

 (5)

In the result, we get the following matrix:

, = �� �� � ⋯ �⋯ �⋮ ⋮� � ⋱ ⋮⋯ ��
�× �∙�!

 (6)

Notice that matrix B contains only zeroes.

Matrix A contains two rows with Hamming

weight equal to one and one with Hamming

weight equal to two. What is more, this matrix

contains all possible vectors, whose length is

two, and Hamming weight is one. In the

9 Journal of Software & Systems Development

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

matrix M, every row and every column

contain only one matrix A. Thus, the matrix M

contains all possible vectors, whose length is 2 ∙ k, and Hamming weight is one. In that case, IQ,RPIJK� S = ∅ and no function with

compound degree equal to two can be used as

a decomposition function.

Since matrix A contains a row of all ones, it is

not possible to find a pair of decomposition

functions =? ⊕ =V and =V ⊕ =Z such that � −* = 1 ∨ � − � = 1. Thus, the first (in the

lexicographic order) pair of decomposition

functions that satisfies this limitation is

chosen, i.e., =� ⊕ =` and =` ⊕ =a . In that case,

the number of variables was reduced to �� =�̀ � − 1 without any computations.

On the other hand, if � ≠ 3 ∙ k (� ≥ 7), then

we have � C! = � A	 , =� , =�, … , =
��! or � C! = � A	��, A	 , =�, =�, … , =
��!. In that

case, instead of the matrix M, we get one of the

following matrices accordingly:

,� = �0 ,1 0 � ���!× �∙���! (7)

,� = �0 0 ,1 0 00 1 0 �
 ���!× �∙���!

 (8)

Recall that the matrix M contains all possible

rows with Hamming weight equal to one,

whose length is 2 ∙ k. Thus, both ,� and ,�

matrices contain all possible 2 ∙ k + 1 and 2 ∙k+2-bit length vectors accordingly. Therefore,

again IQ,RPIJK� S = ∅.

Notice that the ,� matrix contains a row such

that only =� and =� are one. Thus, {A	 , =�, =�} ∈PIJK and a pair of functions A	 ⊕ =� and =� ⊕=� cannot be used as decomposition functions.

On the other hand, {A	 , =�, =`} ∈ IQ,RPIJKS

and one more variable is reduced without

computations. Similarly, the ,� matrix

contains a row such that only =� is one. Thus, {A	��, A	 , =�} ∈ PIJK and {A	��, A	 , =�} ∈IQ,RPIJKS.

As a result, for both matrices, we obtain a

reduction of variables by �	̀� − 1 without any

computations whatsoever.

Several remarks on 37� functions

Let , = 2. In that case, a truth table of

symmetric index generation function contains

all � = 0�21 binary vectors, whose length is N

and Hamming weight is two. In this

subsection, we consider S�b function and

present the analysis of the properties of the S��

functions.

The truth table of the S�b function is presented

in Table 6. Notice that A� equals one for the

first three vectors. In that case, the rest of the

variables, i.e., A�, A` and Ab, represent all

possible vectors, whose length is � − 1 and

Hamming weight is one. Thus, a discernibility

matrix contains all possible vectors with A� =0, whose Hamming weight is two, i.e., rows

that represent I��, I�` and I�` sets.

Journal of Software & Systems Development 10

__

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

Table	6:	Symmetric	function	379.

 A� A� A` Ab � C!

1 1 0 0 1

1 0 1 0 2

1 0 0 1 3

0 1 1 0 4

0 1 0 1 5

0 0 1 1 6

It should be also noted that for other vectors A� equals zero and their Hamming weight is

two. Thus, for L = {1,2,3} and N = {4,5,6}, sets IJK contain all possible vectors with A� = 1

and Hamming weight two. In that case, the

generation of PIJK leads to a discernibility

matrix that contains all possible vectors,

whose length is N and Hamming weight is two.

It also contains rows of all ones, e.g., I�[=

{A�, A�, A`, Ab}. The obtained discernibility

matrix (before removing duplicates) was

presented in Table 7. Based on that, the

algorithm chooses a pair of functions to

decompose the input function, i.e., =� = A� ⊕A� and =� = A� ⊕ A` 0{A�, A�, A`} ∈IQ,RPIJKS1.

Table 7: The discernibility matrix for symmetric function 379.

 A� A� A` Ab L, N

0 1 1 0 1,2

0 1 0 1 1,3

1 0 1 0 1,4

1 0 0 1 1,5

1 1 1 1 1,6

0 0 1 1 2,3

1 1 0 0 2,4

1 1 1 1 2,5

1 0 0 1 2,6

1 1 1 1 3,4

1 1 0 0 3,5

1 0 1 0 3,6

0 0 1 1 4,5

0 1 0 1 4,6

0 1 1 0 5,6

11 Journal of Software & Systems Development

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

For bigger values of N (� ≥ 6), it should be

noted that set of vectors for a subset of input

variables, i.e., {Ab, Aa, … , A	}, contains all

possible vectors with Hamming weight equal

to one and two, and vectors of all zeroes. Using

considerations described earlier in this

section, we know that {Ab, Aa, A[} ∈IQ,RPIJKS. Thus, =` = Ab ⊕ Aa and =b =Aa ⊕ A[. This leads to a conclusion that the

approach for S�� functions is quite similar to

that described in Section 4a of this paper. We

can repeat this procedure � times in total.

Therefore, the number of variables is reduced

to �� = � − � without any computations.

Evaluation

To evaluate the efficiency of the described

approach, we analyze some basic symmetric

index generation functions. The same

functions were used by other authors

(Nagayama et al. (2020)) to analyze the

optimum algorithm. Table 8 shows obtained

results, i.e., the reduction of the number of

variables (from N to N'), using the described

properties of symmetric functions and the FF

approach. In table 8a, S. 4a denotes results

obtained using the approach described in

Section 4a of this paper. Column S. 4b shows

the results after applying further

minimization. Notice that the number of

variables was significantly reduced without

any computations. The values of N, K and the

number of variables obtained using the

approach from Section 4c for S�� functions

were presented in Table 8b. The linear

decomposition algorithms can be applied to

further reduce the number of variables. Since

the time efficiency of all heuristic linear

decomposition algorithms depends on the

number of input variables, reducing it leads to

better efficiency.

Table 8: Obtained results using the properties of symmetric functions and the FF approach

a) 34�	functions	

Function	 �	 S.	4a	 S.	4b	���¡ 10 7 6 ���¡ 20 14 13 ��̀ ¡ 30 20 19 ��b¡ 40 27 26 ��a¡ 50 34 33 ��[¡ 60 40 39 ��¢¡ 70 47 46 ��£¡ 80 54 53

b) 37�	functions	

Function	 �	 K S. 4c ���¡ 10 45 7 ���a 15 105 10 ���¡ 20 190 14 ���a 25 300 17 ��̀ ¡ 30 435 20 ��̀ a 35 595 24

Table 9 shows the obtained results after minimizing symmetric functions using original heuristic

algorithms by Mazurkiewicz and Łuba (2019). The column denoted Opt shows results obtained using

the optimum method by Nagayama et al. (2020). However, this method searches only for solutions

with a compound degree less or equal to five. Thus, it is possible to find a decomposition with fewer

input variables than Opt. The column denoted ¤ presents the optimum theoretical solution calculated

using the following formula:

¤ = ⌈log� �⌉ (9)

Journal of Software & Systems Development 12

__

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

Table 9: Results obtained using heuristic algorithms

Function Opt ª FF MinR ���¡ 4 4 4 4 ���¡ 7 5 6 5 ��̀ ¡ 10 5 6 5 ��b¡ 13 6 7 6 ��a¡ 17 6 7 6 ��[¡ 20 6 7 6 ��¢¡ 23 7 8 7 ��£¡ 27 7 8 7

Table 10 shows the compound degree for

results obtained using FF and MinR methods.

The most remarkable result to emerge from

the data is that the application of heuristic

methods leads to better results in terms of the

number of input variables. Results obtained

using the FF approach are close to ¤, while the

MinR method leads to results equal ¤ for all

analyzed functions. However, the obtained

compound degrees are generally high. It is

worth mentioning that both methods, FF and

MinR, were not designed to minimize the

compound degree of a decomposed function.

Using the approach described in this paper,

we obtain worse result by one variable for the ��[¡ function using the FF method. The main

reason for this is that the argument reduction

procedure is not applied. Thus, an input

function is slightly different. For other

analyzed symmetric functions, we get the

same number of the variables P after linear

decomposition.

Table	10:	Compound	degree.	

	

Method	 344«	 347« 348« 349« 34:« 345« 34¬« 34«

FF 4 9 15 22 29 29 38 36

MinR 5 10 16 20 32 32 26 40

Figure 2 shows computation time (in seconds)

of heuristic decomposition of symmetric

index generation functions ��	. The

experiments were conducted using

experimental software implemented in

Python (using NumPy), and run on the

following computer environment: CPU: Intel

Xeon E5-2650v2 2.6Hz, memory: 64 GB, OS:

Windows 7, interpreter: Python 3.8.

Computation time using original algorithms

was presented. Additionally, the computation

time after reducing the number of variables

using the approach proposed in this paper

was presented to evaluate its efficiency. It was

denoted FFp and MinRp accordingly.

13 Journal of Software & Systems Development

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

The FF method is much faster than the

optimum method by Nagayama et al. (2020)

implemented in the C language and leads to

quite good results. For example, it finds the

solution for the ��£¡ function that is worse than

the theoretical optimum by only one variable

in 1.2 seconds. On the other hand, the time

efficiency of the MinR method is much worse.

Notice that the reduction of the number of

variables leads to better time efficiency of

both algorithms. Time FFp is up to 2.3 times

shorter than the computation time of the

original method. On the other hand, the MinR

method has been accelerated only by 5%.

Notice that the presented results prove that

the MinR method is more time-consuming.

 (a) The FF method. (b) The MinR method.

Fig. 2: Computation time (in seconds) for 34� functions

Figure 3 shows the computation time (in

seconds) of minimization of several ��	

functions. The obtained results are similar to

those for ��	 functions. A significant reduction

in computation time was achieved using the

approach described in this paper. Notice that

computation times are longer compared to

those presented in Figure 2a. This is because

the number of vectors K is much larger for ��	

functions. For example, the truth table of the ��̀ a function has � = 35 vectors. On the other

hand, if , = 2, then � = 595 (see Table 8b).

Fig. 3: Computation time (in seconds) for 37� functions

Journal of Software & Systems Development 14

__

Tomasz MAZURKIEWICZ (2021), Journal of Software & Systems Development,

DOI: 10.5171/2021.590033

Conclusion

In this paper, the properties of symmetric

index generation functions were analyzed.

Additionally, we proved that those properties

can be used to efficiently reduce the number

of variables. This leads to a lower

computation time of the heuristic linear

decomposition algorithms. In particular, the

FF method was accelerated by up to 2.3 times

for analyzed ��	 functions. Significant time

improvement was also achieved for ��	

functions. What is more, we proved that

heuristic algorithms can provide better

results (in a shorter time) than the optimum

algorithm in terms of the number of variables

P. However, the compound degrees are much

higher.

In this paper, we focused on symmetric

functions with , ≤ 2. Therefore, our future

work includes analysis of properties of

functions with , ≥ 3 and their influence on

heuristic linear decomposition algorithms.

References

• Borowik, G. (2014), ‘Data Mining

Approach for Decision and Classification

Systems Using Logic Synthesis

Algorithms,’ Advanced Methods and

Applications in Computational

Intelligence. Topics in Intelligent

Engineering and Informatics, vol. 6, pp. 3-

23.

• Borowik, G. and Łuba, T. (2014), ‘Fast

Algorithm of Attribute Reduction Based

on the Complementation of Boolean

Function,’ ch. 2, pp. 25-41, Springer

International Publishing.

• Łuba, T., Borowik, G. and Jankowski, C.

(2016), ‘Gate based decomposition of

index generation functions,’ Photonics

Applications in Astronomy,

Communications, Industry, and High-

Energy Physics Experiments, Proc. of SPIE,

vol. 10031.

• Mazurkiewicz, T. (2020), ‘Non-disjoint

functional decomposition of index

generation functions,’ Proceedings of the

50th IEEE International Symposium on

Multiple-Valued Logic (ISMVL), Miyazaki,

Japan, pp. 137-142.

• Mazurkiewicz, T. (2020), ‘Application of

Graph Theory Algorithms in Non-disjoint

Functional Decomposition of Specific

Boolean Functions,’ Journal of

Telecommunications and Information

Technology, pp. 67-74, 3/2020,

https://www.il-

pib.pl/czasopisma/JTIT/2020/3/67.pdf

• Mazurkiewicz, T. (2020), ‘On heuristic

linear decomposition of symmetric index

generation functions,’ Proceedings of the

36th International Business Information

Management Association Conference

(IBIMA), Granada, Spain, pp. 11011-

11018.

• Mazurkiewicz, T. and Łuba, T. (2019),

‘Linear and non-linear decomposition of

index generation functions,’ Proceedings

of the 26th International Conference on

Mixed Design of Integrated Circuits and

Systems (MIXDES), Rzeszów, Poland, pp.

246-251.

• Nagayama, S., Sasao, T. and Butler, J.T.

(2020), ‘On Optimum Linear

Decomposition of Symmetric Index

Generation Functions,’ Proceedings of the

IEEE 50th International Symposium on

Multiple-Valued Logic (ISMVL), Miyazaki,

Japan, pp. 130-136.

• Sasao, T. (2011), Memory-Based Logic

Synthesis, 1st ed., New York: Springer-

Verlag.

• Sasao, T. (2017), ‘Index generation

functions: Minimization methods,’

Proceedings of the IEEE 47th

International Symposium on Multiple-

Valued Logic (ISMVL), Novi Sad, Serbia,

pp. 197-206.

• Sasao, T. (2020), Index generation

functions, Synthesis lectures on digital

circuits and systems, San Rafael, CA:

Morgan & Claypool Publishers.

