
IBIMA Publishing

Journal of Software & Systems Development

https://ibimapublishing.com/articles/JSSD/2024/478010/

Vol. 2024 (2024), Article ID 478010, 31 pages, ISSEN: 2166-0824

https://doi.org/10.5171/2024.478010

Cite this Article as: Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO (2024)," Performance

Comparison of RESTful Web APIs using a Test Suite: .NET vs. Java Spring Boot ", Journal of Software & Systems

Development, Vol. 2024 (2024), Article ID 478010, https://doi.org/10.5171/2024.478010

Research Article

Performance Comparison of RESTful Web APIs using a

Test Suite: .NET vs. Java Spring Boot

1Antonio GODINHO, 2Jose ROSADO, 3Filipe SA and 4Filipe CARDOSO

1Polytechnic Institute of Coimbra, Technology and Management School of Oliveira do Hospital,

Rua General Santos Costa, 3400-124 Oliveira do Hospital, Portugal

and Research Center for Arts and Communication (CIAC), Santarém Polytechnic University

Complexo Andaluz, Apartado 279, 2001 -904 Santarém, Portugal
2Polytechnic Institute of Coimbra, Coimbra Institute of Engineering

Rua Pedro Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal

and INESC Coimbra - Instituto de Engenharia de Sistemas e Computadores de Coimbra

Rua Sílvio Lima, Pólo II,3030-790 Coimbra, Portugal
3Polytechnic Institute of Coimbra, Coimbra Institute of Engineering

Rua Pedro Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal
4Santarém Management School, Santarém Polytechnic University

Complexo Andaluz, Apartado 279, 2001 -904 Santarém, Portugal

and INESC Coimbra - Instituto de Engenharia de Sistemas e Computadores de Coimbra

Rua Sílvio Lima, Pólo II,3030-790 Coimbra, Portugal

Correspondence should be addressed to: Antonio GODINHO; agodinho@iscac.pt

 Received date:21 February 2024; Accepted date:19 June 2024; published date: 27 August 2024

Academic Editor: António Trigo

Copyright © 2024. Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO. Distributed under Creative

Commons Attribution 4.0 International CC-BY 4.0

Abstract

Modern web development methods use full-stack to split front-end (client-side) and back-end (server-side)

components. Front-end technologies involve what the user sees and interacts with, and back-end technologies involve

the server-side logic, databases, and server configuration. Both sections can be technologically independent, yet there’s

a need for a communications protocol. In modern web development, web APIs enable applications to interact with

external services and exchange data, allowing the back-end to communicate with multiple and different front-ends. The

landscape of software development, especially in web platforms, is in a constant state of technological advancement.

Selecting the right technology for building a Web API requires a comparative analysis to make informed decisions.

Performance testing of a web API involves evaluating various performance characteristics, such as response time,

reliability, scalability, and resource utilization under different scenarios. However, many testing frameworks focus on

specific components or HTTP methods rather than considering the entire technology stack, potentially leading to

inaccurate performance assessments. In this study, two web APIs were developed—one using .NET and the other

employing Java Spring Boot. Both APIs use the same database engine and the same database to manipulate identical

datasets. By utilizing a test scenario and toolset, real-world conditions can be simulated, allowing for the evaluation and

visualization of the results of each test to facilitate performance comparison.

Keywords: Web API, Performance tests, Full-stack development, .NET, Java

Journal of Software & Systems Development 2

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Introduction

Web development typically involves both client-

side and server-side, referred to as full-stack web

development (Lee, Jin and International Society for

Computers and Their Applications, 2019). Full-

stack development has seen significant growth in

recent years as the need for web development has

increased with the growth of the Internet and e-

commerce. With the rise of the cloud, micro-

services architecture, and the need to create and

maintain complex web applications, full-stack

developers have become increasingly in demand.

One of the main drivers of this growth is the

increasing popularity of JavaScript, which is used

for both front-end and back-end development, but

especially on the front-end side. JavaScript has

evolved over the years, and now it has an extended

set of tools for back-end and front-end

development, such as Node.js, Angular, React, and

Vue.js, that allows developers to use the same

language for both the front-end and back-end,

making full-stack development more accessible.

Web APIs (Application Programming Interfaces)

play a crucial role in full-stack development as they

allow the different components of a web

application to communicate with each other.

Complex applications can be divided into teams for

the back-end and front-end, working

independently and allowing different technologies

to be used separately. This approach allows the

split of the developing challenges into smaller and

simpler tasks, reducing the complexity and

potential for coding bugs.

An API is an interface with functions, tools, and

protocols to integrate application software and

services. Web API is an API that can be accessed via

the web using the HTTP/HTTPS protocols. It allows

requesting systems to access and manipulate web

resources using a uniform and predefined set of

rules. Interaction in REST-based systems happens

through the Internet's Hypertext Transfer Protocol

(HTTP) (Fielding, 2000).

A Web API allows the front-end of a web

application to interact with the back-end by

making requests to specific endpoints and

receiving data in response. This separation allows

the front-end to display dynamic data, such as user

information or a shopping cart's contents, and

perform operations, such as submitting a form or

making a payment. The back-end is often written

using technologies such as Java, Python, or Node.js

and also uses web development frameworks.

In 2020, a survey from the developer nation

showed that nearly 90% of developers use APIs,

proving that the emergence of APIs has been a

critical factor behind the developer ecosystem

boom in the past few years (Voskoglou, 2020).

With an increasing number of programming

languages, many with similar components and

coding styles, performance should play a role in

choosing a language/framework. The proper way

to do this evaluation is to develop two different

Web APIs using various technologies that use the

same database and display the same output.

RESTful Web API

A RESTful Web API is a web-based architectural

style for creating web services. REST

(Representational State Transfer) is a set of

principles that govern how data are exchanged

between clients and servers over HTTP protocol.

RESTful APIs are designed to be simple and

scalable, making it easy for developers to create

web applications that can communicate with each

other over the Internet.

RESTful APIs are based on resources identified by

unique URIs (Uniform Resource Identifiers). These

resources can be manipulated using standard

HTTP methods such as GET, POST, PUT, and

DELETE. One of the critical features of RESTful APIs

is that they are stateless. Each request the client

sends contains all the information needed to

complete the request. The server does not maintain

any client-specific information between requests,

making it easier to scale the API and handle many

requests. One of the critical characteristics of a

RESTful Web service is the explicit use of HTTP

methods in a way that follows the protocol as

defined by RFC 2616 (Rodriguez, 2008).

The HTTP standard defines eight different kinds of

messages. These four are the most commonly used:

GET - Get a representation of this resource.

DELETE - Destroy this resource. POST - Create a

new resource based on the given presentation

underneath this one. PUT - Replace this resource's

state with the one described in the given

representation (RESTful Web APIs [Book], 2013).

3 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

These methods or verbs are often interpreted as

the standard CRUD operations - Create, Read,

Update, and Delete - as depicted in Figure 1.

Figure 1 - Web API endpoints for CRUD operations

Related Work

Performance testing is a type of testing that aims to assess the responsiveness and stability of a system when

subjected to a specific workload. Additionally, this form of testing can also aid in examining, evaluating, and

validating other key quality attributes of the system, including scalability, reliability, and resource utilization

(The Art of Application Performance Testing, 2nd Edition [Book], 2014). This section provides a review and

summary of the work of various researchers who have evaluated and investigated the performance of web

servers, database servers, and Web APIs over the years.

In (Iyengar, MacNair and Nguyen, 1997), A. Iyengar et al. simulated a heavily loaded Web server. They

determined the distribution of request latencies for different set parameters, where many pages are created

dynamically. Web server performance is limited by the server's processing power, not the network.

In (Jain et al., 2020), P. Jain et al. considered the performance metrics: Page Load Time, Start Render Time,

Speed Index, and First CPU Idle. All except the Start Render Time may be applied to Web APIs. The Page Load

Time determines the time taken to load every element on the website. Speed Index is the average time the

different visible parts take to get displayed. First, CPU Idle is the point of time at which a page is least interactive,

making the window capable enough to handle user input.

In (Bermbach and Wittern, 2016), David Bermbach et al. focus on two main qualities. Availability, where the

web API can respond to the requests, and if it is or is not fully functional. The other quality is performance, split

into latency and throughput. Latency describes the time between the start of a request at the client and the end

of receiving a response from the client. Conversely, throughput represents the number of requests a web API

handles at a given time.

In (Khan and Amjad, 2016), Rijwan Khan et al. emphasized the significance of performance testing for web

applications, highlighting various testing processes such as load testing, soak testing, smoke testing, and stress

testing. The focus of the paper is on the application of smoke testing to a developed web application. It

emphasizes the responsibility of the tester to thoroughly assess all aspects of the software before delivery,

ensuring the provision of error-free and reliable software to the customer.

In assessing Web-Based APIs' performance, drawing upon insights obtained from earlier research by the same

authors is crucial. The study titled "Method for Evaluating the Performance of Web-Based APIs", by Godinho et

al., established a test battery, employing specific open-source tools to appraise Web API performance. This

study constitutes a foundational reference for our current research, validating its practical application in

evaluating various technologies (Godinho et al., 2024).

Journal of Software & Systems Development 4

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

API Performance Tests

The set of tests used in this work to evaluate Web-Based performance was referenced in section

Related Work.

Load Testing focuses on evaluating the

performance of your system concerning the

number of concurrent users or requests per

second. It can also be utilized to replicate a typical

business day. The load test is possible to evaluate

the present performance of the system during

regular load scenarios.

Stress Testing is a form of load testing employed to

establish a system's boundaries. Its objective is to

validate the dependability and consistency of a

system in harsh conditions. This test is conducted

to ascertain how your design will function in

extreme situations and determine the maximum

capacity of your system concerning users or

throughput. Also, identify the breaking point and

failure mode of your system.

A Spike Test is a stress test that differs from

traditional stress testing by rapidly increasing the

load to extreme levels within a brief time frame.

The objective of a spike test is to evaluate the

system’s ability to cope with sudden surges in

traffic and identify any performance bottlenecks or

issues that may arise. This test enables early

detection of potential problems before they occur

in a production environment and ensures the

system can handle anticipated traffic levels.

Finally, Soak Testing is employed to verify the

dependability of a system over a prolonged period

under heavy load. This test confirms that the

system does not experience any bugs or memory

leaks that can lead to a crash or restart. To identify

bugs related to race conditions that occur

sporadically. Ensure that the allocated storage

space for your database is not depleted for log files.

Confirm that the services will continue to function

after endless requests.

Technologies and Tools

There are many programming languages, different

technologies, and frameworks for Web API

development, as stated in section RESTful Web API.

This work aimed to match up .NET (version 6) with

Java, used to develop these Web APIs in both

technologies, Object/Relational Mapping for the

database interaction.

Object-Relational Mapping (ORM) encompasses

solutions for mapping business objects to

relational data by separating persistence concerns

on a persistence layer as collections on object-

oriented programming language (Yoder and

Johnson, 1998). Developers can interact with

databases using objects and a high-level object-

oriented API rather than writing complex SQL code.

These objects allow the application to create, read,

update, and delete operations, commonly known as

CRUD operations, that can be performed on the

database using the object model of the program.

ORM tools provide an abstraction layer between

the application code and the database, allowing

developers to work with data in a way that is

independent of the underlying database structure

and technology.

.NET

.NET is a software development framework created

by Microsoft to build a wide range of applications,

including web, mobile, desktop, gaming, and IoT.

While versions 4.x and previous versions only

supported Windows, .NET 5.0 introduced cross-

platform support. With .NET 5, developers can

create applications that run on multiple operating

systems, including Windows, Linux, and macOS.

Also, .NET 5 merged the features of .NET

Framework, .NET Core, and Xamarin into a single

framework, making it easier to develop and

maintain applications.

Entity Framework

Entity Framework —(EF) is an ORM package

produced by Microsoft that allows .NET

applications to store data in relational databases,

shown in Figure 2.

5 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 2 - Microsoft Entity Framework

EF supports different approaches for database

access, like Code First, Database First, and Model

First, which allows developers to choose the one

that better suits their needs. EF also supports

different types of databases, like SQL Server,

SQLite, MySQL, and PostgreSQL.

Java

Java is a class-based, object-oriented,

programming language and computing platform

designed to have as few implementation

dependencies as possible. It is a cross-platform

language, meaning compiled Java code can run on

all platforms supporting Java without

recompilation. Java is one of the most popular

programming languages in use today.

This work uses Java Spring Boot, an open-source

Java framework that makes creating standalone,

production-grade, Spring-based applications with

minimal configuration and boilerplate code easier.

Spring Boot makes it easy to create standalone,

web-based, and micro-services-based applications

that require minimal configuration, reducing the

time and effort required for setup and

development.

Java Persistence API

Java Persistence API (JPA) is a Java specification for

managing, persisting, and accessing data between

Java objects/classes and a relational database. It is

a part of the Java Enterprise Edition (Java EE)

platform and provides a standard way to interact

with databases in a Java environment. JPA is similar

to Microsoft's Entity Framework in the .NET

framework. JPA provides a set of annotations and

interfaces that can be used to define mappings

between Java classes and database tables. It also

provides a powerful and flexible query language,

called the Java Persistence Query Language (JPQL),

that allows developers to retrieve and manipulate

data in a way that is similar to querying in-memory

objects. JPA is a specification; therefore, it is

implemented by different providers, such as

Hibernate, EclipseLink, and OpenJPA, which

provide their implementation of JPA; this allows

developers to choose the one that better suits their

needs. In this work, Hibernate will be used as a

provider. In a relational database, the connection

between the application code and the database will

be handled by Java Database Connectivity (JDBC),

shown in Figure 3.

Figure 3 - JPA and the Java ORM layer

Journal of Software & Systems Development 6

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Tools

For monitoring, stats, and dashboards creation

tools for this work, it was used a combination of

Prometheus, Fluentd, and Grafana.

Prometheus (Turnbull, 2018) is an open-source

monitoring and alerting platform that provides a

multi-dimension data model by collecting data in

the form of time series from data sources.

Prometheus employs a pull model over HTTP to

manage the real-time metrics in a time series

database and utilizes PromQL to enable flexible

queries and real-time alerting. In contrast to

blackbox monitoring, as performed by

Nagios/Icinga, suitable only for classical admin

jobs, Prometheus promotes a whitebox monitoring

approach, thus aiding in administering the internal

specifics about the state of the micro-services

(Sukhija and Bautista, 2019). It also includes built-

in alerting and visualization capabilities that allow

users to set up alerts and visualize their data.

Overall, Prometheus is a popular and highly

versatile tool for monitoring and analyzing system

and application performance (Coarfa, Druschel and

Wallach, 2006). Prometheus doesn't allow splitting

logs into different fields, on this work, into different

APIs, but Fluentd provides this work.

Fluentd (Ismail et al., 2017) is an open-source data

collector that is used to unify logging data and

other time-series data from various sources in real

time. It is designed to handle large volumes of data

and can route data to multiple destinations,

including storage systems, message queues, and

analytic tools. Fluentd can collect data from various

sources, including logs, events, and metrics, and

send them to Prometheus.

Grafana (Chakraborty and Kundan, 2021) is an

open-source analytics and visualization platform

that allows you to create customizable dashboards

for monitoring and analyzing data from various

sources. It provides a centralized platform for

creating and sharing interactive, real-time,

visualizations, alerts, and panels that make it easy

to understand and monitor complex data.

For testing the API, the tools used were: curl and k6

(k6 Documentation, no date). cURL is a command-

line tool for transferring data over various

protocols, including HTTP, FTP, and SMTP. Using

cURL can send HTTP requests to web servers and

receive responses, which helps test and debug web

applications and APIs. Hey is an open-source HTTP

load-testing tool simulating web applications or

API traffic, allowing small scripts to test the

performance and scalability of web services

quickly.

Test Scenario

The test scenario was done by installing a virtual

machine (VM) on Debian Linux and cloning twice

to have the same base. The head node uses 8 CPUs

and 4 GB of RAM, while the other two nodes also

use 4 CPUs but only 2 GB of RAM.

7 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 4 - Test scenario

On the head node, Nginx was installed to act as a

reserve proxy solution to access the API’s. It was

installed and configured on the same node as

Prometheus, Grafana, and Fluentd. On the second

node was installed .NET 6 SDK, and the .NET API

was compiled and set up as a service. Finally, Java

SDK was installed on the third node, and the Java

API was configured as a service, similar to the

process on the other API node. For the database

connections and to provide a real-life scenario,

there were used the existing clusters with MariaDB

and Microsoft SQL Server (Figure 4).

Using Nginx as a reserve proxy, any request to the

URI '/net/api/employee' is redirected to the .NET

node, and the requests with the URI

'/net/api/employee' are directed to the Java node,

using their IP's addresses. Both API nodes have a

Prometheus node exported installed to allow the

central node to collect information about the

system (memory and CPU).

The database used for this work contains two

tables. The first is the data about the entity

Department and the other about the Employee. The

Employee table has a foreign key that refers to the

primary Id of the Department, shown in Figure 5.

The design for this database was that a request to

the API employees would require the department

name.

Figure 5 - Database diagram

Developing the two Web APIs to work with the

same database was challenging. Using ORMs

improves productivity, but the developers lose

some control over the queries to the databases. The

way to ensure that both APIs made the same

requests was to force the Java API to use the same

queries that the .NET has done. The .NET API

running on debug prints out the queries to the

console. That query was then used on the JPA

repository implementation on Java, as shown in

Figure 6.

Journal of Software & Systems Development 8

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 6 - Java Employee JpaRepository - from Intellij IDEA

Virtual Users (VUs)

A web API can be made available to clients through

a web server or reverse proxy, which acts as a

gateway to route incoming requests to the

appropriate API endpoints and return responses to

clients. Implementing these solutions can provide

additional functionality like load balancing,

caching, and security features that enhance API

performance and security. Among the most

popular web server and reverse proxy solutions

are NGINX and Apache Web Server.

The maximum number of concurrent connections

for Apache2 is determined by the MaxClients

directive in its configuration file. The default value

is 256, but it can be adjusted according to specific

requirements. On the other hand, the maximum

number of concurrent connections for NGINX is set

by the worker_connections directive in its

configuration file. By default, NGINX can handle up

to 512 connections per worker process, and this

value can be increased to a maximum of 1024

connections per worker process. Assuming that at

least two workers are used, the number of allowed

connections can be up to 2048.

The default user values for K6's tests are set at

modest levels, with the stress and spike tests

initially configured for 40 and 140 users,

respectively. These default values require minimal

CPU and memory resources. However, preliminary

testing determined that a load test with 100 users

would be most suitable for this specific project. For

the stress test, the number of users was increased

in steps of 200, with load levels set at 100, 300, 500,

and 700 users. The peak load for the tests was

placed at 1500 users, which represents 75% of the

NGINX's allowed connections capacity.

 Results

Before running the initial tests on section API

Performance Tests, the first results were obtained

via Grafana while the nodes ran idle without

requests. Within the first hours observed in Figure

7, the Java node required more than double the

RAM compared with the .NET node.

9 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 7 - API - memory consumption idle

The test battery will be repeated using the GET,

POST, and PUT HTTP methods. Tests are run in

different APIs, but the same test will use the same

parameters, duration, and VUs.

GET HTTP method

GET is used to request data from a specified

resource. This test is used to retrieve the list of

departments and employees.

1. GET - Load testing

The load test to the API used the K6 tool. It is a 20

minutes test, starting from 0 VUs to 100 in 5

minutes, keeping the 100 VUs for 10 minutes, and

then 5 minutes to cool down until 0. The memory

requirements had grown constantly on both APIs,

where the Java API also kept requiring from 30 to

40% more RAM (Figure 8). The opposite happens

with CPU requirements. Here, .NET API is more

demanding, requiring less than 5% over Java API.

Figure 8 - GET load testing - memory and CPU

Journal of Software & Systems Development 10

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

The first three requests to the .NET API are always

extremely slow compared to any other during the

20-minutes request. The test was restarted several

times to verify this behavior. The 99% percentile

provides a better image of the response time over

time. But the results with the demeanor on the first

requests could mislead the reading of the results

chart (Figure 9).

Figure 9 - GET load testing - latency 99% percentile

On the 90% percentile, it is possible to verify that

both APIs performed without issues during the

load testing, and the difference between them is so

tiny that they are virtually identical, on Figure 10

confirmed by the results in Table 1.

Figure 10 - GET load testing - latency 90% percentile

Table 1 - K6 GET load testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 4.53 9.75 13.69 0.00% 89618 74.63/s

Java 4.44 8.83 12.4 0.00% 89630 74.66/s

2. GET - Stress testing

The stress testing applied was a 38 minutes test. In

the first 2 minutes, the number of VUs will rise from

0 to 100 and remain for 5 minutes. Over the next 2

minutes, the number of VUs will increase to 300

and stay for 5 minutes. Using the same time

intervals, the number of VUs will reach 700 and,

after, will start to cool down, taking 10 minutes to

get to 0.

The memory requirements were constant on both

APIs, and the Java API also required 35 to 40%

more RAM (Figure 11). On the CPU requirements,

the .NET increased the demand compared to the

Java API, requiring more CPU on average 15% but

raising to 30% when the peak of 700 VUs happens.

11 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 11 - GET stress testing - memory and CPU

While analyzing the performance of this test, it is

possible to understand that the .NET API

outperforms the Java API by a large margin. It is

also observable that the Java API response times

decay after the 300VUs, with slow response times.

On the other hand, the .NET API shows a consistent

and stable performance throughout the test. It is

possible to observe the time differences between

both solutions in Figure 12, where the latency of

the .NET API is represented in green and blue, and

the latency of the Java API is represented in yellow

and red.

Figure 12 - GET stress testing - latency

Table 2 clearly illustrates the superiority of the

.NET API in terms of performance and stability.

Still, there were no errors while accessing both

APIs.

Table 2 - K6 GET stress testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 9.37 13.39 20.35 0.00% 1662746 729.26/s

Java 328.59 886.79 931.82 0.00% 617048 270.53/s

IBIMA Publishing

Journal of Software & Systems Development

https://ibimapublishing.com/articles/JSSD/2024/478010/

Vol. 2024 (2024), Article ID 478010, 31 pages, ISSEN: 2166-0824

https://doi.org/10.5171/2024.478010

Cite this Article as: Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO (2024)," Performance

Comparison of RESTful Web APIs using a Test Suite: .NET vs. Java Spring Boot ", Journal of Software & Systems

Development, Vol. 2024 (2024), Article ID 478010, https://doi.org/10.5171/2024.478010

3. GET - Spike test

The spike testing applied was a 7 minutes and 40 seconds test. In the first 10s, the number of VUs will rise

from 0 to 100 and will remain for 1 minute. Over the next 10 seconds, the number of VUs will increase to

1500 and stay for 3 minutes. In the next 10 seconds, the number of VUs lowers to 100 and will remain for 3

minutes. The test will finish after 10 seconds when the number of VUs reaches 0. In terms of hardware

requirement (Figure 13), and comparing to the stress test results in section

GET - Stress testing, surprisingly, the .NET API had

the same memory consumption. On the other hand,

the Java API required more than 15% of memory.

Figure 13 - GET spike testing - memory and CPU

The difference in CPU requirements follows a

similar behavior, and the difference between both

APIs was negligible when compared with the stress

test. It can be observed in Figure 14 that, applying

a more demanding test, the performance of Java

has degraded. It appears that the Java API cannot

handle the increased load from the more

challenging test, as evidenced by the degradation in

performance. The increase in average response

time from milliseconds to seconds and the high

response time at the 99th percentile (over 2.6s)

indicates that the system is struggling to keep up

with the increased demand.

13 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 14 - GET spike testing - latency

By default, the NGINX has defined the works

connections to 1024. While running this test the

first time, around 1% of the requests could not

reach the APIs since, at the peak of the test, there

were 3000 simultaneous VUs. Even with a few

requests blocked, the test was repeated, directly

accessing the endpoints, removing the man in the

middle (NGINX), and confirming the results from

Figure 14. The test confirmed that the errors were,

in fact, from NGINX, and no errors occurred using

direct access to the .NET and Java API nodes. The

results from

 Table 3 confirmed that Java API couldn't respond

with the same performance as the .NET API.

Table 3 - K6 GET spike testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 198.07ms 475.03 527.76 0.00% 518126 1124.41/s

Java 1.83s 2.58s 2.7s 0.00% 217808 472.75/s

From the same table, it is possible to verify that the .NET can respond to almost two times and a half requests

in the same period.

4. GET - Soak testing

The spike testing applied was a 7 minutes and 40

seconds test. In the first 10s, the number of VUs will

rise from 0 to 100 and will remain for 1 minute.

Over the next 10 seconds, the number of VUs will

increase to 1500 and stay for 3 minutes. In the next

10 seconds, the number of VUs lowers to 100 and

will remain for 3 minutes. The test will finish after

10 seconds when the number of VUs reaches 0.

The results of the soak test were quite clear-cut.

The .NET API performed exceptionally well across

all metrics, even where it showed the least

favorable outcomes, such as CPU usage. The

difference was minimal compared to the Java API.

Additionally, it can be observed from Figure 15 that

the RAM usage of the .NET API remained stable

throughout the test. In contrast, the Java API's RAM

usage continued to increase until it reached nearly

1.5 GB. RAM requirements highlight the difference

in resource usage efficiency between the two APIs

and are essential when choosing an API for a

particular use case.

Journal of Software & Systems Development 14

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 15 - GET soak testing - memory and CPU

This test made it evident that there was a marked

contrast in the performance of the .NET and Java

APIs. The .NET API displayed a steady and

consistent performance throughout the test. At the

same time, the Java API was prone to fluctuations

and had the lowest overall performance, as

depicted in Figure 16.

Figure 16 - GET soak testing - latency

This test was the most extensive test applied to the

work scenario. The results from

Table 4 show that .NET API could handle more than

twice the number of requests the Java API could

run within a 4-hour. Additionally, the average

response time for the Java API was ten times slower

than that of the .NET API.

Table 4 - K6 GET soak testing average results

API http req duration (ms) http req

15 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

 avg p(90) p(99) failed total per second

.NET 6.5 10.38 13.96 0.00% 5667572 393.56/s

Java 61.55 125.96 148.82 0.00% 5336488 370.58/s

POST HTTP method

POST is used to submit an entity to the specified

resource, often causing a change on the server. This

test is used to add a new employee.

1. POST - Load testing

The memory requirements on both APIs are similar

to the GET method; the Java API also kept requiring

more RAM (Figure 17), more than the double.

Compared with the GET method CPU

requirements, both APIs require almost the same

percentage of CPU, but now JAVA is more

demanding and requires around 4% more.

Figure 17 - POST load testing - memory and CPU

On the GET method, we observed that the .NET API

had the first requests extremely slow, and, on the

POST method, it is possible to watch the same

behavior. On the 90th, the .NET API performs

better by a small margin.

Journal of Software & Systems Development 16

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 18 - POST stress testing - latency

But with a closer look using the 99th, it is possible

to observe the erratic performance on the Java API

(Figure 18), also confirmed by the results in

Table 5. The most critical parameter on this test

was the percentage of HTTP requests that failed,

with 15.43%.

Table 5 - K6 POST load testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 7.67 16.69 23.45 0.00% 89299 74.36/s

Java 8.22 38.7 837.08 15.43% 87661 73.01/s

2. POST - Stress testing

Both APIs had consistent memory requirements

with the previous test. The Java API required twice

as much RAM as the .NET API (as shown in Figure

19) with similar results for the GET method. In

terms of CPU requirements, both APIs showed very

close results with only minimal differences.

Figure 19 - POST stress testing - memory and CPU

IBIMA Publishing

Journal of Software & Systems Development

https://ibimapublishing.com/articles/JSSD/2024/478010/

Vol. 2024 (2024), Article ID 478010, 31 pages, ISSEN: 2166-0824

https://doi.org/10.5171/2024.478010

Cite this Article as: Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO (2024)," Performance

Comparison of RESTful Web APIs using a Test Suite: .NET vs. Java Spring Boot ", Journal of Software & Systems

Development, Vol. 2024 (2024), Article ID 478010, https://doi.org/10.5171/2024.478010

Using POST requests, the results obtained when

compared to the GET method are identical, shown

in Figure 20, where the .NET API latency was less

than a half of the Java API. Both APIs have peaks of

latency, but, while the .NET API followed the curve

of the VUs, the Java API had an unstable behavior,

and, when looking at the chart, almost a line more

visible on the 99-percentile curve.

Figure 20 - POST stress testing - latency

Table 6 provides additional support for the

previous results that indicate the Java API under-

performed on this test. The response times rise

from milliseconds to seconds on the Java API, with

a 38.60% of HTTP requests failed.

Table 6 - K6 POST stress testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 13.45 52.19 94.26 0.00% 823521 361.17/s

Java 264.82 1740 2280 38.6% 572631 251.09/s

3. POST - Spike test

In terms of hardware requirement, and compared

to the results of the GET method, the .NET API

requires more CPU. At the peak of the test, the .NET

API required around 95% while the Java API was

75%. On the other hand, Java demanded more

RAM, almost 70%, while .NET performance was

similar to the GET method. On the spike test using

the POST method, the RAM consumption of the

.NET API was identical to the GET method, while

the Java API had an increase of 15%, as shown in

Figure 14.

Journal of Software & Systems Development 18

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 21 - POST spike testing - memory and CPU

The results from

Table 7 and on Figure 22 confirmed that .NET API

had better performance than Java API. Figure 22

also indicates that the behavior of both API's is

according to the number of the VUs, as it was

expected and different from the GET method. Once

again, the number of HTTP requests that failed is

considerable.

Figure 22 - POST spike testing – latency

Table 7 - K6 POST spike testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

19 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

.NET 12.26 28.34 43.4 0.00% 5629988 390.96/s

Java 125.66 1330s 1790s 36.41% 4413447 306.48/s

4. POST - Soak testing

Looking at the results of the soak test, again both

APIs were consistent through the test. On this test,

.NET clearly performed better than Java API,

requiring 17,5% less RAM and 57% of the CPU

requirements, as shown in Figure 23.

Figure 23 - POST soak testing - memory and CPU

The results indicate that when using the POST

method, the .NET API performed better than the

Java API, with the difference in performance

becoming more pronounced when using the 99th

percentile (as seen in Figure 24). It's worth noting

that the results of only the 90th percentile could be

misleading, as the Java API had unstable response

times.

Figure 24 - POST soak testing - latency

 Table 8 reveals the discrepancy in latency values

and, crucially, a 36%+ error rate. The findings in

Table 8 highlight variations in latency values,

where the unit used for the .NET is milliseconds

and for the Java is seconds. Also, very significantly

on the Java API, a concerning error rate exceeding

36%. This high number of errors could point

towards a coding error or platform bug and thus

warrant further examination.

IBIMA Publishing

Journal of Software & Systems Development

https://ibimapublishing.com/articles/JSSD/2024/478010/

Vol. 2024 (2024), Article ID 478010, 31 pages, ISSEN: 2166-0824

https://doi.org/10.5171/2024.478010

Cite this Article as: Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO (2024)," Performance

Comparison of RESTful Web APIs using a Test Suite: .NET vs. Java Spring Boot ", Journal of Software & Systems

Development, Vol. 2024 (2024), Article ID 478010, https://doi.org/10.5171/2024.478010

Table 8 - K6 POST soak testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 12.26 28.34 43.4 0.00% 5629988 390.96/s

Java 125.66 1330s 1790s 36.41% 4413447 306.48/s

PUT HTTP method

The PUT request is employed to alter a resource on

the server by modifying an entity. In this particular

test, it was used to update an existing employee.

The request must include a payload containing all

required data fields and the header must be set to

"Content-Type: JSON" for the request to be valid.

1. PUT - Load testing

On this test, both APIs are again similar to the GET

and POST methods, where the Java API also kept

requiring more RAM (Figure 25), while the

differences in CPU requirements are minimal.

Figure 25 - PUT load testing - memory and CPU

The latency results show that both Web APIs

performed similarly throughout the test, as

portrayed in Figure 26. On the previous methods,

the gap in performance between both APIs was

significant.

21 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 26 - PUT load testing - latency

The findings in

Table 9 and the chart in Figure 26 demonstrate

similar results for the average of HTTP requests,

and, therefore, the total number of requests and

requests per second.

Table 9 - K6 PUT load testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 8.31 17.34 25.95 0.00% 89290 74.35/s

Java 8.44 13.81 18.91 0.00% 89327 74.40/s

2. PUT - Stress testing

On the stress test, the Java API requires almost half

of the CPU, as shown in Figure 27, while the Java

API also kept requiring more RAM (Figure 25),

while .NET API requires around 60% of the RAM,

similar with the GET and POST methods

Figure 27 - PUT stress testing - memory and CPU

IBIMA Publishing

Journal of Software & Systems Development

https://ibimapublishing.com/articles/JSSD/2024/478010/

Vol. 2024 (2024), Article ID 478010, 31 pages, ISSEN: 2166-0824

https://doi.org/10.5171/2024.478010

Cite this Article as: Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO (2024)," Performance

Comparison of RESTful Web APIs using a Test Suite: .NET vs. Java Spring Boot ", Journal of Software & Systems

Development, Vol. 2024 (2024), Article ID 478010, https://doi.org/10.5171/2024.478010

Using PUT requests, the results were different from

all test run at this point. The Java API performed

regularly with around 50% of the latency when

compared with the .NET API. The .NET API had

demonstrated some instability, shown in Figure 28.

Figure 28 - PUT stress testing - latency

Table 10 confirmed the results that indicate the

.NET API under-performed on this test. Both APIs

haven’t failed HTTP requests.

Table 10 - K6 PUT stress testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 10.04 31.85 177.69 0.00% 826365 362.30/s

Java 8.54 13.64 18.83 0.00% 832346 364.97/s

3. PUT - Spike test

In terms of hardware requirement comparing to

the results of the GET and POST methods, both had

similar behaviour. The .NET API requires about

60% of RAM, but more 70% in CPU, as shown in

Figure 29.

23 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 29 - PUT spike testing - memory and CPU

On the spike test, the results were different from

the stress test. On this test, the .NET API latency

was regular without fluctuations and with values

around 40% of the Java API, as shown in Figure 30.

Figure 30 - PUT spike testing - latency

Table 11 confirms that the .NET API performed

significantly better than the Java API, particularly

at the 90th percentile. Both APIs had no HTTP

request errors.

Table 11 - K6 PUT spike testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 28.83 279.58 491.06 0.00% 291490 632.59/s

Java 546.91 987.81 1200 0.00% 204564 444.25/s

IBIMA Publishing

Journal of Software & Systems Development

https://ibimapublishing.com/articles/JSSD/2024/478010/

Vol. 2024 (2024), Article ID 478010, 31 pages, ISSEN: 2166-0824

https://doi.org/10.5171/2024.478010

Cite this Article as: Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO (2024)," Performance

Comparison of RESTful Web APIs using a Test Suite: .NET vs. Java Spring Boot ", Journal of Software & Systems

Development, Vol. 2024 (2024), Article ID 478010, https://doi.org/10.5171/2024.478010

4. PUT - Soak testing

Upon reviewing the results of the soak test, it is

evident that both APIs demonstrated consistency

throughout the test. However, the .NET API

required 40% less RAM but had a higher CPU

requirement of 90%, as illustrated in Figure 31. It

is worth noting that the behavior of the .NET API

differed from the other tests, with a fluctuating CPU

chart line throughout the test, although the range

was not significant.

Figure 31 - PUT soak testing - memory and CPU

Regarding latency, both APIs delivered comparable

results, as evidenced by Figure 32 and

Table 12, whether considering the average values,

total HTTP requests, or requests per second.

Figure 32 - PUT soak testing – latency

Table 12 - K6 PUT soak testing average results

API http req duration (ms) http req

25 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

 avg p(90) p(99) failed total per second

.NET 9.21 19.21 34.45 0.00% 5644050 391.94/s

Java 7.7 10.52 15.36 0.00% 5662375 393.21/s

DELETE HTTP method

The DELETE method removes a resource on the

server, such as an existing employee, in this test.

The request should contain a payload with all

relevant data fields, and the header must be set to

"Content-Type: JSON".

1. DELETE - Load testing

APIs' memory and CPU requirements are similar to

the GET and PUT methods. The .NET API kept

requiring around 60% RAM (Figure 33) of the Java

API.

Figure 33 - DELETE load testing - memory and CPU

For the DELETE requests, the results were

different from the other methods. Even with many

VUs, the chart lines were constant through the test,

except for two peaks on both APIs, shown in Figure

36. Those simultaneous peaks of both APIs may

indicate a database delay and cannot be attributed

to the APIs. With the obtained results, the .NET was

faster across the load test, as depicted in Figure 34.

Journal of Software & Systems Development 26

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 34 - DELETE load testing - latency

Table 13 and the chart in Figure 34 reveal

comparable findings, including over 50% of errors

on HTTP requests. These results indicate that the

Java API struggled to keep up with the HTTP

requests.

Table 13 - K6 DELETE load testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 9.95 22.6 100.57 0.00% 86091 71.72/s

Java 6.63 34.76 1110 50.69% 81751 68.12/s

2. DELETE - Stress testing

On the stress test, the Java API had better

performance in terms of CPU and also performed

better than the other methods. However, once

again, the .NET API required only 60% % of RAM

(as shown in Figure 35).

27 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 35 - DELETE stress testing - memory and CPU

In the DELETE requests, the results were similar to

the other methods. The .NET API was faster all

across the test (Figure 36), with responses from

75% to 80% faster.

Figure 36 - DELETE stress testing - latency

The report from the command line was critical to

understand that both APIs had problems

processing the requests, as shown in

 Table 14. Still, there is a 33% gap between both

APIs, where the Java API reaches almost 78% of the

failed requests.

Table 14 - K6 DELETE stress testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 11.56 40.53 97.48 45.09% 800340 350.90/s

Java 7.08 56.4 5880 77.89% 181930 79.77/s

IBIMA Publishing

Journal of Software & Systems Development

https://ibimapublishing.com/articles/JSSD/2024/478010/

Vol. 2024 (2024), Article ID 478010, 31 pages, ISSEN: 2166-0824

https://doi.org/10.5171/2024.478010

Cite this Article as: Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO (2024)," Performance

Comparison of RESTful Web APIs using a Test Suite: .NET vs. Java Spring Boot ", Journal of Software & Systems

Development, Vol. 2024 (2024), Article ID 478010, https://doi.org/10.5171/2024.478010

3. DELETE - Spike test

Looking at the CPU requirements, it could indicate

that the Java API was able to outer perform the

.NET API, Figure 37.

Figure 37 - DELETE spike testing - memory and CPU

Observing Figure 38, both APIs had the same

behavior as the other HTTP methods, where the

.NET API has better latency.

IBIMA Publishing

Journal of Software & Systems Development

https://ibimapublishing.com/articles/JSSD/2024/478010/

Vol. 2024 (2024), Article ID 478010, 31 pages, ISSEN: 2166-0824

https://doi.org/10.5171/2024.478010

Cite this Article as: Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO (2024)," Performance

Comparison of RESTful Web APIs using a Test Suite: .NET vs. Java Spring Boot ", Journal of Software & Systems

Development, Vol. 2024 (2024), Article ID 478010, https://doi.org/10.5171/2024.478010

Figure 38 - DELETE spike testing - latency

The results in Table 15 were surprising due to the

high number of errors on both APIs, especially on

the Java API, where the percentage of errors was

close to 100%. This test has shown that Java API

could not process the requests, and this problem

had to be investigated.

Table 15 - K6 DELETE spike testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 317.45 613.36 1240 49.99% 232389 504.22/s

Java 1370 2808 3114 99.00% 27707 60.14/s

4. DELETE - Soak testing

Once again, the Java API required more RAM, and,

after thirty minutes, the CPU requirements

dropped to almost 10%, as shown in Figure 39.

Journal of Software & Systems Development 30

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Figure 39 - DELETE soak testing - memory and CPU

The response times of the .NET API were constant

and stable across the test. On the side, the Java API

response times were over eight seconds, which

indicated some problems when compared with the

averages of 32 and 42 milliseconds of the .NET API

on the percentiles 90th and 99th, as seen in Figure

40.

Figure 40 - DELETE soak testing - latency

The results from

Table 16 demonstrated the disparity of values of

the failed HTTP requests, where the JAVA API had

close to 85%.

Table 16 - K6 DELETE soak testing average results

API

http req duration (ms) http req

avg p(90) p(99) failed total per second

.NET 13.84 29.25 41.86 9.79% 5619734 390.25/s

Java 11.79 977.36 1240 84.75% 1425702 99.00/s

31 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

Failed HTTP requests

For a comprehensive understanding of the

functionality of the Web APIs, it is crucial to

comprehend the reasons behind the failed HTTP

requests. These requests may highlight coding

errors, which developers can detect and resolve.

Moreover, failed HTTP requests can adversely

affect the user experience, resulting in

dissatisfaction and a negative impression of the

application.

Table 17 displays the issues associated with the

Java API, particularly concerning the POST and

DELETE methods, where there is a substantially

high rate of failed HTTP requests. This high rate of

failed requests could potentially cause issues for

applications utilizing this API.

Table 17 - All methods API errors

Method API

 Test

Load Stress Spike Soak

GET
.NET 0.00% 0.00% 0.00% 0.00%

Java 0.00% 0.00% 0.00% 0.00%

POST
.NET 0.00% 0.00% 0.00% 0.00%

Java 15.43% 38.6% 39.09% 36.41%

PUT
.NET 0.00% 0.00% 0.00% 0.00%

Java 0.00% 0.00% 0.00% 0.00%

DELETE
.NET 0.00% 45.09% 49.99% 9.79%

Java 50.69% 77.89% 99.00% 84.75%

Discussion

Implementing two Web Restful APIs using different

technologies but sharing a common database

posed a significant challenge. The primary

difficulties stemmed from issues related to variable

naming and proper alignment with the database

columns. These difficulties were exacerbated by

the fact that the ORMs (Object-Relational Mapping)

employed were case-sensitive and sensitive to

capitalization.

Despite these challenges, Microsoft's Entity

Framework was highly influential in generating all

the necessary code when working with a database

featuring two tables connected through a foreign

key (FK) relationship. It seamlessly managed

relationships between tables and created

navigation properties, an aspect that Java lacks. In

contrast, the Java Persistence API ORM

encountered limitations in accessing data from

both tables, necessitating a more intricate solution.

Queries involving multiple entities had to be

manually constructed.

In the initial testing phase, it was observed that

when spike tests were applied to both APIs, the

root cause of the problem was identified as the

Journal of Software & Systems Development 32

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

NGINX server, which could not handle the 3000

simultaneous requests. However, the tests also

revealed that a reverse proxy could be an effective

solution. When running two simultaneous spike

tests with the reverse proxy in place, the error rate

was less than 2%.

Finally, using .NET is straightforward to obtain the

inserted ID of a new record. Getting the inserted ID

is another Java ORM limitation that does not allow

the INSERT INTO statement to return something.

Also, the execution of multiple statements, e.g.,

INSERT INTO ...; SELECT ..., is not supported by

Spring Data JDBC.

Conclusions

Comparing the performance and hardware

demands between established technology like Java

and newer alternatives like .NET can provide

valuable insights into selecting the most suitable

option for a RESTful Web API. Four tests were

carried out to assess both APIs' performance and

hardware requirements: load testing, stress

testing, spike testing, and soak testing. The findings

indicated that while the .NET API outperformed

Java, it also necessitated higher CPU usage.

Under medium to heavy loads, the Java API

exhibited suboptimal performance, with response

times escalating as the number of virtual users

(VUs) increased. Regarding resource utilization,

the .NET API demanded more CPU power, whereas

the Java API consumed a higher proportion of

memory, indicating greater resource consumption.

The test results imply that the .NET API is better

equipped for handling high traffic volumes and

time-sensitive scenarios, processing more requests

with faster response times. Conversely, deploying

the Java API in a cloud environment, where servers

can be scaled to meet demand, may incur higher

costs due to RAM constraints. These tests

underscore the importance of aligning API choices

with project-specific needs and requirements, as

different solutions may excel in distinct contexts.

The tests also underscored the importance of

evaluating API performance across all HTTP verbs.

Regardless of hardware demands or latency,

certain technologies may perform flawlessly with

one HTTP method while encountering a notable

error rate with another. Refrain from neglecting

tests across all methods, which risks yielding

incomplete or misleading conclusions. The results

highlighted the Java Web API's challenges in

handling POST and DELETE HTTP methods,

especially under strenuous testing conditions.

Furthermore, it's crucial to acknowledge the

current need for studies providing accurate

estimates of the CRUD operation usage

percentages in a Web API. These data could be a

promising avenue for future research utilizing

existing logging data.

Acknowledgment

This work is partially funded by National Funds

through the FCT - Foundation for Science and

Technology, I.P., within the scope of the projects

UIDB/00308/2020, UIDB/05583/2020 and

MANaGER (POCI-01-0145-FEDER-028040).

Furthermore, we would like to thank the Applied

Research Institute (i2A) and the Polytechnics

Institute of Coimbra for their support.

References

• Bermbach, D. and Wittern, E. (2016)

‘Benchmarking Web API Quality’, in A.

Bozzon, P. Cudre-Maroux, and C. Pautasso

(eds) Web Engineering. Cham: Springer

International Publishing (Lecture Notes in

Computer Science), pp. 188–206.

Available at:

https://doi.org/10.1007/978-3-319-

38791-8_11.

• Chakraborty, M. and Kundan, A.P. (2021)

‘Grafana’, in M. Chakraborty and A.P.

Kundan (eds) Monitoring Cloud-Native

Applications: Lead Agile Operations

Confidently Using Open Source Software.

Berkeley, CA: Apress, pp. 187–240.

Available at:

https://doi.org/10.1007/978-1-4842-

6888-9_6.

• Coarfa, C., Druschel, P. and Wallach, D.S.

(2006) ‘Performance analysis of TLS Web

servers’, ACM Transactions on Computer

Systems, 24(1), pp. 39–69. Available at:

https://doi.org/10.1145/1124153.11241

55.

• Fielding, R.T. (2000) Architectural styles

and the design of network-based software

architectures. phd. University of California,

Irvine.

• Godinho, A. et al. (2024) ‘Method for

Evaluating the Performance of Web-Based

33 Journal of Software & Systems Development

Antonio GODINHO, Jose ROSADO, Filipe SA and Filipe CARDOSO, Journal of Software & Systems Development,

https://doi.org/10.5171/2024.478010

APIs’, in P.J. Coelho, I.M. Pires, and N.V.

Lopes (eds) Smart Objects and

Technologies for Social Good. Cham:

Springer Nature Switzerland (Lecture

Notes of the Institute for Computer

Sciences, Social Informatics and

Telecommunications Engineering), pp.

30–48. Available at:

https://doi.org/10.1007/978-3-031-

52524-7_3.

• Ismail, B.I. et al. (2017) ‘Reference

architecture for search infrastructure’, in

2017 7th IEEE International Conference on

Control System, Computing and

Engineering (ICCSCE). 2017 7th IEEE

International Conference on Control

System, Computing and Engineering

(ICCSCE), pp. 115–120. Available at:

https://doi.org/10.1109/ICCSCE.2017.82

84390.

• Iyengar, A., MacNair, E. and Nguyen, T.

(1997) ‘An analysis of Web server

performance’, in GLOBECOM 97. IEEE

Global Telecommunications Conference.

Conference Record. GLOBECOM 97. IEEE

Global Telecommunications Conference.

Conference Record, pp. 1943–1947 vol.3.

Available at:

https://doi.org/10.1109/GLOCOM.1997.6

44616.

• Jain, P. et al. (2020) ‘Performance Analysis

of Various Server Hosting Techniques’,

Procedia Computer Science, 173, pp. 70–77.

Available at:

https://doi.org/10.1016/j.procs.2020.06.

010.

• k6 Documentation (no date). Available at:

https://k6.io/docs (Accessed: 11 March

2024).

• Khan, R. and Amjad, M. (2016) ‘Web

application’s performance testing using

HP LoadRunner and CA Wily introscope

tools’, in 2016 International Conference on

Computing, Communication and

Automation (ICCCA). 2016 International

Conference on Computing, Communication

and Automation (ICCCA), pp. 802–806.

Available at:

https://doi.org/10.1109/CCAA.2016.781

3849.

• Lee, G., Jin, Y. and International Society for

Computers and Their Applications (eds)

(2019) 34th International Conference on

Computers and Their Applications (CATA

2019): Honolulu, Hawaii, USA, 18-20 March

2019. International Conference on

Computers and Their Applications, Red

Hook, NY: Curran Associates, Inc (EPiC

series in computing, volume 58).

• RESTful Web APIs [Book] (2013). Available

at:

https://www.oreilly.com/library/view/r

estful-web-apis/9781449359713/

(Accessed: 11 March 2024).

• Rodriguez, A. (2008) ‘RESTful Web

services: The basics’, The basics [Preprint].

• Sukhija, N. and Bautista, E. (2019)

‘Towards a Framework for Monitoring and

Analyzing High Performance Computing

Environments Using Kubernetes and

Prometheus’, in 2019 IEEE SmartWorld,

Ubiquitous Intelligence & Computing,

Advanced & Trusted Computing, Scalable

Computing & Communications, Cloud & Big

Data Computing, Internet of People and

Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCo

m/IOP/SCI). 2019 IEEE SmartWorld,

Ubiquitous Intelligence & Computing,

Advanced & Trusted Computing, Scalable

Computing & Communications, Cloud & Big

Data Computing, Internet of People and

Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCo

m/IOP/SCI), pp. 257–262. Available at:

https://doi.org/10.1109/SmartWorld-

UIC-ATC-SCALCOM-IOP-SCI.2019.00087.

• The Art of Application Performance Testing,

2nd Edition [Book] (2014). Available at:

https://www.oreilly.com/library/view/t

he-art-of/9781491900536/ (Accessed: 11

March 2024).

• Turnbull, J. (2018) Monitoring with

Prometheus. Turnbull Press.

• Voskoglou, C. (2020) APIs Have Taken Over

Software Development | Nordic APIs |,

Nordic APIs. Available at:

https://nordicapis.com/apis-have-taken-

over-software-development/ (Accessed:

11 March 2024).

• Yoder, J.W. and Johnson, R.E. (1998)

‘Connecting Business Objects to Relational

Databases’.

