Introduction of the constraint “rods in XY plane” does not change essentially the mobility. This reflects the substrate surface effect used in generation of the initial morphology (Kaevand et al., 2011). On the contrary, constraining rods in other planes mostly decrease the carrier mobility. Parallel to the Z-axis orientation of the rods results in the increase of the ordered region: compare how the radial distribution functions in Figure 3(b) and 3(d) are accompanied by the increase of the charge carrier in-plane mobility by ca 2-3 orders, resulting in the mobility values of ca 1 cm2/Vs, particularly in the Y-direction. Constraining the rods parallel to the X and Y directions increases the mobility in the direction perpendicular to these axes. Hence, the carrier hopping between the parallel rods is dominating. This is in accordance with the data of the physical experiment, i.e. in the highly conducting region of size ca 10×10 nm, mobility value ca 2 cm2/Vs (diode configuration, F = 106 V/cm) has been observed (Ionescu-Zanetti et al., 2004) and with the basic nature of the TOF mobility being controlled by interchain hopping (Laquai et al., 2007).
It is noteworthy that the 2-d lamella structure in polythiophenes (obtained on the HMDS-treated substrate to enable better self-organization) and the measured in field-effect transistor structure gives μ value up to 0.1 cm2/Vs (Sirringhaus et al., 1999).
In the crystal-like system, in which the number of rods has been increased by a factor of 2.4, the mobility increases ca by five orders of magnitude. In this system, the in-plane conductivity equals to that of metallic copper. This is a hypothetical structure with high number density value (N/V=0.39) and can be realized by introducing a low molecular mass counter-ion (only 1/6 of the cubic box is free for that purpose). Note that in the systems 1 to 7, the N/V values decrease from 0.2 to 0.05.
The mobility of charge carriers in an ordered crystalline material is determined by the bandwidth of the conduction band and experimentally determined by the time-resolved microwave conductivity measurements, leading to the detection of the intrachain mobility values in the ladder-type poly(p-phenylenes) of up to 30 cm2/Vs (Prins et al., 2006). Unfortunately, the analysis of the intra-chain mobility is outside of the possibilities of the approach presented here.
This study is based on the PEDOT/PSS complex morphology, which has been obtained in our previous research (Kaevand et al., 2011), and proven to be realistic. In spite of the fact that only the T beads have been in the focus of this research, the obtained results are reasonable, and the developed method proved to be simple and easy to implement.
Conclusions
A morphology-based method for an estimation of TOF values in a prototypic conjugated polymer PEDOT, complexed with PSS, has been developed. This method makes it possible to estimate the charge carrier mobility values over the whole range of PEDOT/PSS compositions and to reflect the anisotropy, PEDOT concentration and ordering effects. It is likely that the method can be used in other conjugated polymer systems, as well.
Acknowledgement
The authors are grateful to the dean of faculty of Chemistry and Material Sciences of the Tallinn Technical University Prof. A. Öpik for the inspiration and financial support.
References
AASMUNDTVEIT, K. E., SAMUELSEN, E. J., PETTERSSON, L. A. A., INGANAS, O., JOHANSSON, T. & FEIDENHANS’L, R. 1999. Structure of thin films of poly(3,4-ethylenedioxythiophene). Synthetic Metals, 101, 561-564.
Publisher
ARKHIPOV, V. I., HEREMANS, P., EMELIANOVA, E., V., , ADRIAENSSENS, G. J. & BÄSSLER, H. 2002. Weak-field carrier hopping in disordered organic semiconductors: the effect of deep traps and partly filled density-of -states distribution J.Phys.: Condens. Matter, 14, 9899-9911.
Publisher
ATHANASOPOULOS, S., KIRKPATRICK, J., MARTINEZ, D., FROST, J. M., FODEN, C. M., WALKER, A. B. & NELSON, J. 2007. Predictive study of charge transport in disordered semiconducting polymers. Nano Letters, 7, 1785-1788.
Publisher – Google Scholar
BAUMEIER, B., KIRKPATRICK, J. & ANDRIENKO, D. 2010. Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies. Phys.Chem. Chem,. Phys., 112, 11103-11113.
Publisher – Google Scholar
BREDAS, J. L., BELJONNE, D., COROPCEANU, V. & CORNIL, J. 2004. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers : A molecular picture. Chem. Rev., 104, 4971-5003.
Publisher – Google Scholar
BÄSSLER, H. 1993. Charge transport in disordered organic photoconductors: A Monte Carlo simulation study. Phys. stat. sol, 175, 15-56.
Publisher
CHATTEN, A. J., BALLANTYNE, A. M., FROST, J. M., ASTUTI, Y., DURRANT, J., R. , & NELSON, J. 2007. Influence of morphology on charge dynamics in conjugated polymers and blends for solar cell applications. 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 579-583.
COROPCEANU, V., CORNIL, J., DA SILVA FILHO, D., A., OLIVIER, Y., SILBEY, R. & BREDAS, J. L. 2007. Charge transport.in organic semiconductors. Chem. Rev., 107, 926-952.
Publisher – Google Scholar
DE KOK, M., BUECHEL, M., VULTO, S., VAN DE WEIJER, MEULENKAMP, P., DE WINTER, S., MANK, A., VORSTENBOSCH, H., WEIJTENS, C. & VAN ELSBERGEN, V. 2004. Modification of PEDOT: PSS as hole injector layer in polymer LEDs. Phys. stat sol. (a), 201, 1342-1359.
Publisher
DENG, W. Q. & GODDARD, W. A. 2004. Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. Journal of Physical Chemistry B, 108, 8614-8621.
Publisher – Google Scholar
DKHISSI, A., BELJONNE, D., LAZZARONI, R., LOUWET, F., GROENENDAAL, L. & BREDAS, J. L. 2003. Density functional theory and Hartree-Fock studies of the geometric and electronic structure of neutral and doped ethylenedioxythiophene (EDOT) oligomers Int. J. of Quant. Chem., 91, 517-523.
Publisher
GESKIN, A. M., DKHISSI, A. & BREDAS, J. L. 2003. Oligothiophene radical cations: Polaron structure in hybrid DFT and MP2 calculations Int. J. of Quant. Chem., 91, 350-354.
Publisher – Google Scholar
GRELL, M. 2005. Electronic and electro-optic molecular materials and devices. In: KELSALL, R. W., HAMLEY, I. W. & GEOGHEGAN, M. (eds.) Nanoscale science and technology. John Wiley&Sons, Ltd.
Publisher
GROENENDAAL, L. B., JONAS, F., FREITAG, D., PIELARTZIK, H. & REYNOLDS, J. R. 2000. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present and future Adv.Mater., 12, 481-494.
Publisher – Google Scholar
HUTCHISON, G., RATNER, M. & MARKS, T. 2005. Hopping Transport in Conductive Heterocyclic Oligomers: Reorganization Energies and Substituent Effects. JACS, 127, 2339-2350.
Publisher
IONESCU-ZANETTI, C., MECHLER, A., CARTER, S. A. & LAL, R. 2004. Semiconductive Polymer Blends: Correlating Structure with Transport Properties at the Nanoscale. Adv. Mater., 16, 385-389.
Publisher – Google Scholar
JÖNSSON, S. K. M., BIRGERSON, J., CRISPIN, X., GRECZYNSKI, G., OSIKOWICZ, W., DENIER VAN DER GON, A. W., SALANECK, W. R. & FAHLMAN, M. 2003. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synthetic Metals, 139, 1-10.
Publisher – Google Scholar
KAEVAND, T., KALDA, J., KUKK, V., ÖPIK, A. & LILLE, Ü. 2011. Correlation of the morphology and electrical conductivity in thin films of PEDT/PSS complex: an integrated meso-scale simulation study. Molecular Simulation, 37.
KARL, N. 2003. Charge carrier transport in organic semiconductors. Synthetic Metals, 133-134, 649-657.
Publisher
KEMERINK, M., TIMPANARO, S., DEKOK, M. M., MEULEMKAMP, E. A. & TOUWSLAGER, M. J. 2004. Three-dimensional inhomogeneities in PEDOT: PSS films. J.Phys.Chem.B, 108, 18820-18825.
Publisher
KIM, E. G. & BREDAS, J. L. 2008. Electronic Evolution of Poly(3,4-ethylenedioxythiophene) (PEDOT): From the Isolated Chain to the Pristine and Heavily Doped Crystals. Journal of the American Chemical Society, 130, 16880-16889.
Publisher
KIRCHMEYER, S. & REUTER, K. 2005. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). Journal of Materials Chemistry, 15, 2077-2088.
Publisher
LAFORGUE, A. & ROBITAILLE, R. 2010. Production of Conductive PEDOT Nanofibers by the Combination of Electrospinning and Vapor-Phase Polymerization. Macromolecules, 43, 4194-4200.
Publisher – Google Scholar
LANG, U., MULLER, E., NAUJOKS, N. & DUAL, J. 2009. Microscopical Investigations of PEDOT:PSS Thin Films. Advanced Functional Materials, 19, 1215-1220.
Publisher
LAQUAI, F., WEGNER, G. & BASSLER, H. 2007. What determines the mobility of charge carriers in conjugated polymers? Philos Transact A Math Phys Eng Sci, 365, 1473-87.
NARDES, A. M., JANSSEN, R. A. J. & KEMERINK, M. 2008. A morphological model for the solvent-enhanced conductivity of PEDOT : PSS thin films. Advanced Functional Materials, 18, 865-871.
Publisher
NARDES, A. M., KEMERINK, M., JANSSEN, R. J. A. M., BASTIAANSEN , J., KIGGEN, N. M. M., LANGEVELD, B., VAN BREEMEN, A. & DE KOK, M. 2007. Microscopic understanding of the anisotropic conductivity of PEDOT : PSS thin films. Advanced Materials, 19, 1196-1200.
Publisher
NELSON, J., KWIATKOWSKI, J. J., KIRKPATRICK, J. & FROST, J. M. 2009. Modeling Charge Transport in Organic Photovoltaic Materials. Acc Chem Res.
Publisher
PASVEER, W. F., COTTAAR, J., TANASE, C., COEHOORN, R., BOBBERT, P., BLOM, P., DE LEEUW, M., MICHELS, M. & 2005. Unified description of charge carrier mobilities in disordered semiconducting polymers Physical Review Letters, 94, 206601-1 to 206601-4.
PRINS, P., GROZEMA, F., SCHINS, J., SAVENIJE, T. P., S., SCHERF, U. & SIEBBELES, L. 2006. Effect of intermolecular disorder on the intrachain charge transportin ladder-type poly(p-phenylenes. Phys. Rev. B, 73, 045204-1 to 9.
SANGEETH, C. S. S., JAISWAL, M. & MENON, R. 2009. Correlation of morphology and charge transport in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Journal of Physics-Condensed Matter, 21, 072101-106.
SIRRINGHAUS, H., BROWN, R., FRIEND, H., NIELSEN, M., BECHGAARD, K., LANGEVELD-VOSS, B.A. J. H. SPIERING, B., JANSSEN, R., MEIJER, E., HERWIG, P. & DE LEEUW, D. 1999. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 401, 685-689.
Publisher – Google Scholar
SMITH, R. R., SMITH, A. P., STRICKER, J. T., TAYLOR, B. E. & DURSTOCK, M. F. 2006. Layer-by-layer assembly of poly(ethylenedioxythiophene): poly(styrenesulfonate). Macromolecules, 39, 6071-6074.
Publisher
ZHUO, J., LI-HONG ZHAO, L., CHIA, P., SIM, W., FRIEND, R. & HO, P. 2008. Direct Evidence for Delocalization of Charge Carriers at the Fermi Level in a Doped Conducting Polymer Physical Review Letters, 100, 186601-4.
TANASE, C., MEYER, E., J., BLOM, P., W. & DE LEEUW, D. M. 2003. Unification of the Hole Transport in Polymeric Field-Effect Transistors and Light-Emitting Diodes Phys.Rev. Lett., 91, 216601-216604.
Publisher – Google Scholar
TORQUATO, S. 2002. Random Heterogeneous Materials. Microstructure and Macroscopic Properties, Springer.
Publisher – Google Scholar
TULADHAR, S., SIMS, M., KIRKPATRICK, J., MAHER, R., CHATTEN, A., BRADLEY, D., NELSON, J. & 2009. Influence of alkyl chain length on charge transport in symmetrically substituted poly(2,5-dialkoxy-p-phenylenevinylene) polymers.Phys. Rev. B, 79, 035201-035210.
Publisher – Google Scholar
TURBIEZ, M., FRERE, P. & RONCALI, J. 2003. Stable and Soluble Oligo(3,4-ethylenedioxythiophene)s End-Capped with Alkyl Chains J.Org. Chem., 68, 5357-5360.
Publisher – Google Scholar
TYUTNEV, A. P., SAENKO, V. S., PODZHIDAEV, E. D. & IKHSANOV, R. S. 2008. Time of flight results for molecularly doped polymers revisited. J.Phys.Condens. Matter, 20, 215219 (6pp).
VALEEV, E. F., COROPCEANU, V., DA SILVA FILHO, D., A., SALMAN, S. & BREDAS, J. L. 2006. Effect of Electronic Polarization on Charge-Transport Parameters in Molecular Organic Semiconductors. JACS, 128, 9882-9886.
WANG, S. J. & PARK, H. H. 2009. Electronic properties of hybridized poly (3, 4-ethylenedioxythiophene): Polystyrene sulfonate with surface-capped CdSe nanocrystals. Journal of Applied Physics, 105, 023716-1 to 023716-5.